辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2010, Vol. 30 ›› Issue (3): 68-71.DOI: 10.3696/j.issn.1672-6952.2010.03.019

• 计算机与自动化 • 上一篇    下一篇

一种改进的人眼特征检测方法

刘 伟,纪玉波*   

  1. 辽宁石油化工大学计算机与通信工程学院,辽宁抚顺113001
  • 收稿日期:2010-03-07 出版日期:2010-09-25 发布日期:2017-07-05
  • 作者简介:刘伟(1975-),男,河南开封市,在读硕士。

An Improved Method for the Detection of Human Eyes Feature

 

LIU Wei, JI Yu-bo*
  

  1.  
    School of Computer and Communication Engineering, Liaoning Shihua University, Fushun Liaoning 113001, P.R.China
  • Received:2010-03-07 Published:2010-09-25 Online:2017-07-05

摘要: 眨眼是人眼的重要特征。尝试了一种将双眼作为整体,利用Haar小波变换确定位置,然后利用人脸
模型,分割出两个单眼,最后使用PCA方法判断出眨眼的检测方法。这种方法将双眼作为整体检测克服了人眼单眼
定位的误差,并在双眼整体检测结果上运用PCA方法提取数据,检测眨眼,实验结果表明,此方法是可行和有效的。

关键词: Haar小波 , 特征检测 , 特征眼 , 主元分析法

Abstract:  

Blink is an important feature of human eyes. The both eyes were treated as an entirety and the eye area was located by using Haar wavelet. The two eyes were obtained based on facial model, at last blink detection method were got by using PCA method. The method reduced error of eye location using single eye by treating the both eyes as a whole. And based on the result of eyes detection data extraction ,blink detection can be done by using PCA method. The experimental results show the method is feasible and effective.

Key words: Haar wavelet ,  Feature detection,  Eigeneye ,  Principal component analysis method

引用本文

刘 伟,纪玉波. 一种改进的人眼特征检测方法[J]. 辽宁石油化工大学学报, 2010, 30(3): 68-71.

LIU Wei, JI Yu-bo. An Improved Method for the Detection of Human Eyes Feature[J]. Journal of Liaoning Petrochemical University, 2010, 30(3): 68-71.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3696/j.issn.1672-6952.2010.03.019

               https://journal.lnpu.edu.cn/CN/Y2010/V30/I3/68