[1] |
ZHANG X Y, XU Y Y, GIORDANO F, et al. Molecular engineering of potent sensitizers for very efficient light harvesting in thin film solid state dye sensitized solar cells[J]. Journal of the American Chemical Society, 2016, 138(34): 10742⁃10745.
|
[2] |
SHI J, CHAI Z F, TANG R L, et al. Effect of electron⁃withdrawing groups in conjugated bridges:Molecular engineering of organic sensitizers for dye⁃sensitized solar cells[J]. Frontiers of Optoelectronics, 2016, 9(1): 60⁃70.
|
[3] |
CAMPAGNA S, PUNTORIERO F, NASTASI F, et al. Photochemistry and photophysics of coordination compounds: Ruthenium[M]//BALZANI V, CAMPAGNA S. Photochemistry and Photophysics of Coordination Compounds I. Berlin: Springer, 2007: 117⁃214.
|
[4] |
MATTIUZZI A,MARCÉLIS L,JABIN I,et al.Synthesis and electrochemical and photophysical properties of calixarene⁃based ruthenium (Ⅱ) complexes as potential multivalent photoreagents[J].Inorganic Chemistry,2013,52(19):11228⁃11236.
|
[5] |
YUAN W Z, YU Z Q, LU P, et al. High efficiency luminescent liquid crystal: Aggregation⁃induced emission strategy and biaxially oriented mesomorphic structure[J]. Journal of Materials Chemistry, 2012, 22(8): 3323⁃3326.
|
[6] |
TANAKA K, GON M, CHUJO Y. Molecular designs for solid⁃state luminescent properties and recent progresses on the development of functional luminescent solid materials[M]//OOYAMA Y, YAGI S. Progress in the Science of Functional Dyes. Singapore: Springer, 2021: 309⁃341.
|
[7] |
QU S J, HUANG S Q, GUO C Q, et al. Chromium arc plasma characterization, structure and properties of CrN coatings prepared by vacuum arc evaporation[J]. Vacuum, 2023, 209: 111796.
|
[8] |
Korkmaz Ş. Electrochromic and optical properties of Al₂O₃ doped WO₃ layer deposited by thermionic vacuum arc technique[J]. Physica B: Condensed Matter, 2023, 668: 415204.
|
[9] |
MACMANUS⁃DRISCOLL J L, WELLS M P, YUN C, et al. New approaches for achieving more perfect transition metal oxide thin films[J]. APL Materials, 2020, 8(4): 40904.
|
[10] |
ADAMIDIS M, KONIDAKIS I, STRATAKIS E. Post⁃glass melting synthesis and photochromic properties of composite AgCl⁃AgPO₃ glasses[J]. Journal of Materiomics, 2023, 9(3): 455⁃463.
|
[11] |
ZYSMAN⁃COLMAN E, SLINKER J D, PARKER J B, et al. Improved turn⁃on times of light⁃emitting electrochemical cells[J]. Chemistry of Materials, 2008, 20(2): 388⁃396.
|
[12] |
GAO F G, BARD A J. Solid⁃state organic light⁃emitting diodes based on Tris (2,2'⁃bipyridine)ruthenium(Ⅱ) complexes[J]. Journal of the American Chemical Society, 2000, 122(30): 7426⁃7427.
|
[13] |
MÜLLER S, RUDMANN H, RUBNER M F, et al. Using organic light⁃emitting electrochemical thin⁃film devices to teach materials science[J]. Journal of Chemical Education, 2004, 81(11): 1620.
|
[14] |
VEERANNA G,CHITTIREDDY V R R,RAVINDER V.Synthesis and characterization of Ru(Ⅱ) complexes with polyfunctional amides and their application in catalytic oxidative coupling of amines[J].Results in Chemistry,2024,9:101618.
|
[15] |
DUBEY S K KHATKAR S,TRIVEDI M,et al. Syntheses and structural and serum protein protecting activity of ruthenium(Ⅱ)–DMSO complexes containing a mercapto ligand[J]. New Journal of Chemistry, 2022, 46(24): 11669⁃11675.
|
[16] |
CHENG F X, HE C X, REN M L, et al. Preparation, photophysical, and electrochemical properties of three trinuclear Ru(Ⅱ) complexes: Bridging ligands composed of 2,2′⁃bipyridine and 4,5diazafluorene fragments[J]. Inorganic Chemistry Communications, 2014, 43: 10⁃14.
|
[17] |
BREU J, DOMEL H, STOLL A.Racemic compound formation versus conglomerate formation with [M(bpy)₃](PF₆)₂
|
|
M=Ni,Zn,Ru); molecular and crystal structures[J]. European Journal of Inorganic Chemistry, 2000, 2000(11: 2401⁃2408.
|
[18] |
PARAMONOV P B, PANIAGUA S A, HOTCHKISS P J, et al. Theoretical characterization of the indium tin oxide surface and of its binding sites for adsorption of phosphonic acid monolayers[J]. Chemistry of Materials, 2008, 20(16): 5131⁃5133.
|
[19] |
KIM D, LEE A W H, EASTCOTT J I, et al. Modifying the surface properties of indium tin oxide with alcohol⁃based monolayers for use in organic electronics[J]. ACS Applied Nano Materials, 2018, 1(5): 2237⁃2248.
|
[20] |
DIAO Y, MYERSON A S, HATTON T A, et al. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation[J]. Langmuir, 2011, 27(9): 5324⁃5334.
|
[21] |
GUAN Y F, HONG X Y, KARANIKOLA V, et al. Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity[J]. Nature Communications, 2025, 16(1): 713.
|
[22] |
LEE B, LITTRELL K, SHA Y C, et al. Revealing the effects of the non⁃solvent on the ligand shell of nanoparticles and their crystallization[J]. Journal of the American Chemical Society, 2019, 141(42): 16651⁃16662.
|
[23] |
CHOI H, WEI Z X, YOU J B, et al. Effects of chemical and geometric microstructures on the crystallization of surface droplets during solvent exchange[J]. Langmuir, 2021, 37(17): 5290⁃5298.
|
[24] |
ONOJIMA N, SHINTANI I, KITAHARA S I, et al. Organic field⁃effect transistors using liquid crystalline compound synthesized to enhance carrier⁃transport ability[J]. Synthetic Metals, 2010, 160(13⁃14): 1474⁃1478.
|
[25] |
RIVNAY J, JIMISON L H, NORTHRUP J E, et al. Large modulation of carrier transport by grain⁃boundary molecular packing and microstructure in organic thin films[J]. Nature Materials, 2009, 8(12): 952⁃958.
|
[26] |
TREMPA M, KRANERT C, KUPKA I, et al. Evaluation of improvement strategies of grain structure properties in high performance multi⁃crystalline silicon ingots[J]. Journal of Crystal Growth, 2019, 514: 114⁃123.
|
[27] |
KUSHWAHA A K, MISRA M, MENEZES P L. Enhancement in mechanical properties of bulk nanocrystalline aluminum by grain boundary strengthening mechanism[J]. Journal of Materials Engineering and Performance, 2025, 34(1): 735⁃748.
|
[28] |
XU L L, LIU G Y, XIANG H Y, et al. Charge⁃carrier dynamics and regulation strategies in perovskite light⁃emitting diodes:From materials to devices[J]. Applied Physics Reviews, 2022, 9(2): 21308.
|
[29] |
PELZER K M, DARLING S B, GRAY S K, et al. Exciton size and quantum transport in nanoplatelets[J]. Journal of Chemical Physics, 2015, 143(22): 224106.
|
[30] |
KOČKA J, OSWALD J, FEJFAR A, et al. Charge transport in porous Silicon: Considerations for achievement of efficient electroluminescence[J]. Thin Solid Films, 1996, 276(1⁃2): 187⁃190.
|