[1] |
胡绢敏. 钛基催化剂的制备及其光催化还原CO2性能研究[D]. 南京: 南京理工大学, 2021.
|
[2] |
何志勇, 郭本帅, 汪东, 等. CO2捕集和利用技术的应用与研发进展[J]. 油气藏评价与开发, 2024, 14(1): 70⁃75.
|
|
HE Z Y, GUO B S, WANG D, et al. Application and research progress of CO2 capture and utilization technology[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 70⁃75.
|
[3] |
尹静, 卢文玉, 财音青格乐. 酶法和微藻固定二氧化碳的研究进展[J]. 化工进展, 2013(11): 2535⁃2542.
|
|
YIN J, LU W Y, CAI Y Q G L. Progress of enzymatic and microalgal carbon dioxide fixation[J]. Chemical Industry and Engineering Progress, 2013(11): 2535⁃2542.
|
[4] |
YE L, LI Z H. Rapid microwave⁃assisted syntheses of reduced graphene oxide (RGO)/ZnIn2S4 microspheres as superior noble⁃metal⁃free photocatalyst for hydrogen evolutions under visible light[J]. Applied Catalysis B⁃Environmental, 2014, 160⁃161: 552⁃557.
|
[5] |
ZHU C Z, CHEN X, MA J, et al. Carbon nitride modified defective TiO2- x@carbon spheres for photocatalytic H2 evolution and pollutants removal: Synergistic effect and mechanism insight[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20444⁃20458.
|
[6] |
李越越. Bi2O2(OH)(NO3)基光催化剂的构筑及CO2还原性能研究[D]. 郑州: 郑州大学, 2022.
|
[7] |
刘子灵. Ti基与Cu基金属有机框架复合材料光催化还原CO2的性能研究[D]. 金华: 浙江师范大学, 2022.
|
[8] |
杨济舟. P掺杂的g⁃C3N4/GeS2和N掺杂的GeS2光还原CO2的第一性原理研究[D]. 南昌: 南昌航空大学, 2021.
|
[9] |
康志. TiO2基复合半导体的制备及光催化性能的研究[D]. 兰州: 西北师范大学, 2021.
|
[10] |
安绍云. 锌基固溶体半导体材料的制备及其光催化还原CO2性能研究[D]. 银川: 宁夏大学, 2022.
|
[11] |
张旭. 多孔ZnS层包覆的超薄ZnO纳米片制备及其光催化产氢[D]. 天津: 天津大学, 2017.
|
[12] |
陈鹏. 基于金属半导体氧化物纳米材料对硫化氢气敏特性研究[D]. 沈阳: 辽宁大学, 2019.
|
[13] |
刘爽爽, 李娟, 史佳菲, 等. g⁃C3N4光催化剂改性方法的研究进展[J]. 山东化工, 2020(7): 85⁃86.
|
|
LIU S S, LI J, SHI J F, et al. Research progress on the modification of g⁃C3N4 photocatalyst[J]. Shandong Chemical Industry, 2020(7): 85⁃86.
|
[14] |
张丽娜, 郜梦迪, 陶虹秀, 等. CdIn2S4纳米材料的制备及其应用进展[J]. 硅酸盐通报, 2017, 36(10): 3298⁃3302.
|
|
ZHANG L N, GAO M D, TAO H X, et al. Research progress on preparation technology and application of CdIn2S4 nanomaterials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3298⁃3302.
|
[15] |
FAN L, GUO R. Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process[J]. The Journal of Physical Chemistry C, 2008, 112(29): 10700⁃10706.
|
[16] |
KALE B B, BAEG J O, LEE S M, et al. CdIn2S4 nanotubes and "marigold" nanostructures:A visible⁃light photocatalyst[J]. Advanced Functional Materials, 2006, 16(10): 1349⁃1354.
|
[17] |
PENG S J, MHAISALKAR S G, RAMARKRISHNA S. Solution synthesis of CdIn2S4 nanocrystals and their photoelectrical application[J]. Materials Letters, 2012, 79: 216⁃218.
|
[18] |
WANG W J, NG T W, HO W K, et al. CdIn2S4 microsphere as an efficient visible⁃light⁃driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms[J]. Applied Catalysis B⁃Environmental, 2013, 129: 482⁃490.
|
[19] |
WANG T, CHAI Y Y, MA D K, et al. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications[J]. Nano Research, 2017, 10(8): 2699⁃2711.
|
[20] |
盛惠朋. 二氧化铈基纳米复合物的制备及其催化性能研究[D]. 沈阳: 东北大学, 2020.
|
[21] |
WANG G Q, WEI J J, YE J Y. A signal⁃off photoelectrochemical aptasensor for highly sensitive detection of T⁃2 toxin using 3D CdS/CdIn2S4 heterostructured nanostars by in⁃situ generated electron donor strategy[J]. Sensors and Actuators B⁃Chemical, 2023, 381: 133421.
|
[22] |
卢南, 孙瑾, 程兴, 等. CdS的制备及其光催化性能研究[J]. 广州化工, 2012, 40(22): 74⁃76.
|
|
LU N, SUN J, CHENG X, et al. Study on preparation of CdS and properties of its photocatalysis[J]. Guangzhou Chemical Industry, 2012, 40(22): 74⁃76.
|
[23] |
HUANG J W, LI L, CHEN J Q, et al. Broad spectrum response flower spherical⁃like composites CQDs@CdIn2S4/CdS modified by CQDs with up⁃conversion property for photocatalytic degradation and water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1822⁃1836.
|
[24] |
ZHANG Q Q, WANG J X, YE X J, et al. Self⁃assembly of CdS/CdIn2S4 heterostructure with enhanced photocascade synthesis of schiff base compounds in an aromatic alcohols and nitrobenzene system with visible light[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46735⁃46745.
|
[25] |
ZHANG N, LIN S F, WANG F C, et al. Highly efficient photocatalytic H2O2 production on core⁃shell CdS@CdIn2S4 heterojunction in non⁃sacrificial system[J]. Research on Chemical Intermediates, 2021, 47(8): 3379⁃3393.
|
[26] |
YE X J, CHEN Y H, LING C C, et al. Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3[J]. Chemical Engineering Journal, 2018, 348: 966⁃977.
|
[27] |
ZHANG M, YU Z H, XIONG J. One⁃step hydrothermal synthesis of CdxInyS( x+1.5 y) or photocatalytic oxidation of biomass⁃derived 5⁃hydroxymethylfurfural to 2,5⁃diformylfuran under ambient conditions[J]. Applied Catalysis B⁃Environmental, 2022, 300: 120738.
|
[28] |
HUANG J Y, HUANG Z Y, XU S, et al. Photocatalytic oxidative coupling of benzylamine to schiff base over 0D/2D CdS/CdIn2S4 heterojunction[J]. Energy Technology: Generation, Conversion, Storage, Distribution, 2022, 10(8): 2200362.
|
[29] |
TAN Y X, CHAI Z M, WANG B H, et al. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4⁃CdS: Synergetic effect of compact heterojunction and s⁃vacancy[J]. ACS Catalysis, 2021, 11(5): 2492⁃2503.
|