1 |
张明慧,徐文,武丽莎,等.MXene基纳米材料在高性能水系锌离子混合电容器中的研究进展[J].新型炭材料,2022,37 (3):508⁃526.
|
|
Zhang M H,Xu W,Wu L S,et al.Recent progress in MXene⁃based nanomaterials for high⁃performance aqueous zinc⁃ion hybrid capacitors[J].New Carbon Materials,2022,37(3):508⁃526.
|
2 |
赵秋妮,蒋亚东,袁震,等.MXene复合气敏材料:进展与未来挑战[J].科学通报,2022,67(24):2823⁃2834.
|
|
Zhao Q N,Jiang Y D,Yuan Z,et al.Progress and future challenges of MXene composites for gas sensing[J].Chinese Science Bulletin,2022,67(24):2823⁃2834.
|
3 |
崔元元,李禧龙,牛丽,等.Nb2C及其功能化结构的电子性质的第一性原理研究[J].电子世界,2022(2):64⁃65.
|
|
Cui Y Y,Li X L,Niu L,et al.First principles study on electronic properties of Nb2C and its functionalized structures[J].Electronics World,2022(2):64⁃65.
|
4 |
Makola L C,Moeno S,Ouma C N M,et al.Facile fabrication of a metal⁃free 2D⁃2D Nb2CTx@g⁃C3N4 MXene⁃based schottky⁃heterojunction with the potential application in photocatalytic processes[J].Journal of Alloys and Compounds,2022,916:1⁃15.
|
5 |
Zhang Z,Wang B,Zhao H B,et al.Self⁃assembled lead⁃free double perovskite⁃MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction[J].Applied Catalysis B⁃Environmental,2022,312:1⁃9.
|
6 |
胡帅成,程宏辉,韩兴博,等.二维材料MXene在储氢领域的应用研究[J].功能材料,2022,53(5):5160⁃5172.
|
|
Hu S C,Cheng H H,Han X B,et al.Application of two dimensional material MXene in the hydrogen storage field[J].Journal of Functional Materials,2022,53(5):5160⁃5172.
|
7 |
白洋,王树超,李梦宜,等.MXenes类纳米药物的研究进展[J].天津药学,2021,33(2):72⁃76.
|
|
Bai Y,Wang S C,Li M Y,et al.Advances in the research of MXenes nanodrugs[J].Tianjin Pharmacy,2021,33(2):72⁃76.
|
8 |
肖和,张文展,邱小林,等.MXenes及其复合材料在钾离子电池中的应用进展[J].化工新型材料,2022,50(5):6⁃9.
|
|
Xiao H,Zhang W Z,Qiu X L,et al.Application of MXenes and its composite in potassium ion battery[J].New Chemical Materials,2022,50(5):6⁃9.
|
9 |
Wu Z,Li C,Li Z,et al.Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis[J].ACS Nano,2021,15(3):5696⁃5705.
|
10 |
Zhang J,Zhao Y,Guo X,et al.Single platinum atoms immobilized on an Mxene as an efficient catalyst for the hydrogen evolution reaction[J].Nature Catalysis,2018,1(12):985⁃992.
|
11 |
Zhao D,Chen Z,Yang W,et al.Mxene (Ti3C2) vacancy⁃confined single⁃atom catalyst for efficient functionalization of CO2[J].Journal of the American Chemical Society,2019,141(9):4086⁃4093.
|
12 |
Junkaew A,Arroyave R.Enhancement of the selectivity of MXenes (M2C,M = Ti,V,Nb,Mo) via oxygen⁃functionalization:Promising materials for gas⁃sensing and⁃separation[J].Physical Chemistry Chemical Physics,2018,20(9):6073⁃6082.
|
13 |
石怀川,石 磊.纳米碳颗粒/氮化碳复合材料的制备及光催化性能[J].辽宁石油化工大学学报,2021,41(4):41⁃45.
|
|
Shi H C,Shi L.Preparation and photocatalytic properties of nanocarbon particles/carbon nitride[J].Journal of Liaoning Petrochemical University,2021,41(4):41⁃45.
|
14 |
Yang C,Tan Q,Li Q,et al.2D/2D Ti3C2 MXene/g⁃C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst:Dual effects of urea[J].Applied Catalysis B⁃Environmental,2020,268:1⁃11.
|
15 |
Jiang H Y,Zang C,Zhang Y,et al.2D Mxene⁃derived Nb2O5/C/Nb2C/g⁃C3N4 heterojunctions for efficient nitrogen photofixation[J].Catalysis Science & Technology,2020,10(17):5964⁃5972.
|
16 |
郑妍,宫红,王锐.NiO功能化修饰ZnO纳米花对二甲苯的选择性检测[J].石油化工高等学校学报,2022,35(3):43⁃48.
|
|
Zheng Y,Gong H,Wang R.Selective detection of xylene by NiO functionalized ZnO nanoflowers[J].Journal of Petrochemical Universities,2022,35(3):43⁃48.
|
17 |
Zhou W,Yu B,Zhu J,et al.Hierarchical ZnO/Mxene (Nb2C and V2C) heterostructure with efficient electron transfer for enhanced photocatalytic activity[J].Applied Surface Science,2022,590:1⁃10.
|
18 |
Wang Y,Hu X,Song H,et al.Oxygen vacancies in actiniae⁃like Nb2O5/Nb2C Mxene heterojunction boosting visible light photocatalytic No removal[J].Applied Catalysis B⁃Environmental,2021,299:1⁃9.
|
19 |
Su T,Peng R,Hood Z D,et al.One⁃step synthesis of Nb2O5/C/Nb2C (Mxene) composites and their use as photocatalysts for hydrogen evolution[J].Chem. Sus. Chem.,2018,11(4):688⁃699.
|
20 |
Low J,Qiu S,Xu D,et al.Direct evidence and enhancement of surface plasmon resonance effect on Ag⁃loaded TiO2 nanotube arrays for photocatalytic CO2 reduction[J].Applied Surface Science,2018,434:423⁃432.
|
21 |
Low J,Zhang L,Tong T,et al.TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J].Journal of Catalysis,2018,361:255⁃266.
|
22 |
Shen J,Shen J,Zhang W,et al.Built⁃in electric field induced CeO2/Ti3C2⁃MXene schottky⁃junction for coupled photocatalytic tetracycline degradation and CO2 reduction[J].Ceramics International,2019,45(18):24146⁃24153.
|
23 |
Xu W,Li X,Peng C,et al.One⁃pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions[J].Applied Catalysis B⁃Environmental,2022,303:1⁃8.
|
24 |
Wang H,Peng R,Hood Z D,et al.Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible⁃light irradiation[J].Chem. Sus. Chem.,2016,9(12):1490⁃1497.
|
25 |
Kresse G,Furthmuller J.Efficient iterative schemes for Ab initio total⁃energy calculations using a plane⁃wave basis set[J].Physical Review B,1996,54(16):11169⁃11186.
|
26 |
Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented⁃wave method[J].Physical Review B,1999,59(3):1758⁃1775.
|
27 |
Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77 (18):3865⁃3868.
|
28 |
Paier J,Hirschl R,Marsman M,et al.The perdew⁃burke⁃ernzerhof exchange⁃correlation functional applied to the G2⁃1 test set using a plane⁃wave basis set[J].Journal of Chemical Physics,2005,122(23):1⁃13.
|
29 |
Blochl P E.Projector augmented⁃wave method[J].Physical Review B,1994,50(24):17953⁃17979.
|
30 |
Grimme S,Antony J,Ehrlich S,et al.A Consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT⁃D) for the 94 elements H⁃Pu[J].Journal of Chemical Physics,2010,132(15):1⁃19.
|
31 |
Becke A D,Edgecombe K E.A simple measure of electron localization in atomic and molecular⁃systems[J].Journal of Chemical Physics,1990,92(9):5397⁃5403.
|
32 |
Tang W,Sanville E,Henkelman G.A grid⁃based bader analysis algorithm without lattice bias[J].Journal of Physics⁃Condensed Matter,2009,21(8):1⁃7.
|
33 |
Yu M,Trinkle D R.Accurate and efficient algorithm for bader charge integration[J].Journal of Chemical Physics,2011,134 (6):1⁃8.
|
34 |
Hu J,Xu B,Ouyang C,et al.Investigations on Nb2C monolayer as promising anode material for Li or Non⁃Li Ion batteries from first⁃principles calculations[J].RSC Advances,2016,6(33):27467⁃27474.
|
35 |
Lide D R.CRC handbook of chemistry and physics[M].[S.l.]:Taylor & Francis Group,2014.
|
36 |
Kan D,Lian R,Wang D,et al.Screening effective single⁃atom orr and oer electrocatalysts from Pt decorated Mxenes by first⁃principles calculations[J].Journal of Materials Chemistry A,2020,8(33):17065⁃17077.
|