1 |
陈久弘,王毅,王恺华,等.二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J].低碳化学与化工,2023,48(5):62⁃70.
|
|
CHEN J H, WANG Y, WANG K H, et al. Research progress on adsorption and separation technologies and adsorption materials for carbon dioxide capture[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(5): 62⁃70.
|
2 |
LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19⁃29.
|
3 |
曹永安, 张梓鑫, 郝晓倩, 等. 锂硫电池负极保护策略研究进展[J]. 辽宁石油化工大学学报, 2021, 41(2): 1⁃7.
|
|
CAO Y A, ZHANG Z X, HAO X Q, et al. Research progress on anode protection strategies of lithium sulfur battery[J]. Journal of Liaoning Petrochemical University, 2021, 41(2): 1⁃7.
|
4 |
TAO T, LU S G, CHEN Y. A review of advanced flexible lithium⁃ion batteries[J]. Advanced Materials Technologies, 2018, 3(9): 1700375.
|
5 |
CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium⁃ion batteries for practical application[J]. Small, 2018, 14(43): 1702989.
|
6 |
ZHOU L M, ZHANG K, HU Z, et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium⁃ion batteries[J]. Advanced Energy Materials, 2018, 8(6): 1701415.
|
7 |
XU J T, MA J M, FAN Q H, et al. Recent progress in the design of advanced cathode materials and battery models for high‐performance lithium‐X (X=O2, S, Se, Te, I2, Br2) batteries[J]. Advanced Materials, 2017, 29(28): 1606454.
|
8 |
陆雅翔, 赵成龙, 容晓晖, 等. 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 67(12): 120601.
|
|
LU Y X, ZHAO C L, RONG X H, et al. Research progress of materials and devices for room⁃temperature Na⁃ion batteries[J]. Acta Physica Sinica, 2018, 67(12): 120601.
|
9 |
靳爱民. 钠离子电池是锂离子电池的有效替代品[J]. 石油炼制与化工, 2021, 52(1): 19.
|
|
JIN A M. Sodium ion batteries are an effective alternative to lithium⁃ion batteries[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 19.
|
10 |
游济远, 曹永安, 孟绍良, 等. 钠离子电池正极材料研究进展[J]. 石油化工高等学校学报, 2022, 35(2): 1⁃8.
|
|
YOU J Y, CAO Y A, MENG S L, et al. Progress in cathode materials for sodium⁃ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(2): 1⁃8.
|
11 |
XIA H, ZHU X H, LIU J Z, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage[J]. Nature Communications, 2018, 9(1): 5100.
|
12 |
ZHAO C L, YAO Z P, WANG J L, et al. Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode[J]. Chem, 2019, 5(11): 2913⁃2925.
|
13 |
HAN M H, GONZALO E, SHARMA N, et al. High⁃performance P2⁃phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient⁃temperature sodium⁃ion batteries[J]. Chemistry of Materials, 2016, 28(1): 106⁃116.
|
14 |
YOU Y, SONG B H, JARVIS K, et al. Insights into the improved chemical stability against water of LiF⁃incorporated layered oxide cathodes for sodium⁃ion batteries[J]. ACS Materials Letters, 2019, 1(1): 89⁃95.
|
15 |
KELLER M, BUCHHOLZ D, PASSERINI S. Layered Na⁃ion cathodes with outstanding performance resulting from the synergetic effect of mixed P⁃ and O⁃type phases[J]. Advanced Energy Materials, 2016, 6(3): 1501555.
|
16 |
KIM H J, KONAROV A, JO J H, et al. Controlled oxygen redox for excellent power capability in layered sodium⁃based compounds[J]. Advanced Energy Materials, 2019, 9(32): 1901181.
|
17 |
LIANG X H, YU T Y, RYU H H, et al. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium⁃ion batteries[J]. Energy Storage Materials, 2022, 47: 515⁃525.
|
18 |
WANG K, WU Z G, MELINTE G, et al. Preparation of intergrown P/O⁃type biphasic layered oxides as high⁃performance cathodes for sodium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(22): 13151⁃13160.
|
19 |
ZHANG S Y, GUO Y J, ZHOU Y N, et al. P3/O3 integrated layered oxide as high⁃power and long⁃life cathode toward Na⁃ion batteries[J]. Small, 2021, 17(10): 2007236.
|
20 |
ZHENG L M, WANG Z Q, WU M S, et al. Jahn⁃Teller type small polaron assisted Na diffusion in NaMnO2 as a cathode material for Na⁃ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(11): 6053⁃6061.
|
21 |
XIA X, DAHN J R. A study of the reactivity of de⁃intercalated NaNi0.5Mn0.5O2 with non⁃aqueous solvent and electrolyte by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2012, 159(7): A1048.
|
22 |
KALLURI S, SENG K H, PANG W K, et al. Electrospun P2⁃type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium⁃ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 8953⁃8958.
|
23 |
DUFFORT V, TALAIE E, BLACK R, et al. Uptake of CO2 in layered P2⁃Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions[J]. Chemistry of Materials, 2015, 27(7): 2515⁃2524.
|
24 |
YOSHIDA H, YABUUCHI N, KUBOTA K, et al. P2⁃type Na2/3Ni1/3Mn2/3- xTixO2 as a new positive electrode for higher energy Na⁃ion batteries[J]. Chemical Communications, 2014, 50(28): 3677⁃3680.
|
25 |
YUAN D D,HE W,PEI F, et al. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium⁃ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(12): 3895⁃3899.
|
26 |
BUCHHOLZ D, CHAGAS L G, WINTER M, et al. P2⁃type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries[J]. Electrochimica Acta, 2013, 110: 208⁃213.
|
27 |
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium⁃ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): 1701912.
|
28 |
LIU Q N, HU Z, CHEN M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium⁃ion batteries[J]. Small, 2019, 15(32): 1805381.
|
29 |
SUN X, JIN Y, ZHANG C Y, et al. Na[Ni0.4Fe0.2Mn0.4- xTix]O2: A cathode of high capacity and superior cyclability for Na⁃ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(41): 17268⁃17271.
|
30 |
OH S M, MYUNG S T, HWANG J Y, et al. High capacity O3⁃type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries[J]. Chemistry of Materials, 2014, 26(21): 6165⁃6171.
|
31 |
WANG C L, ZHOU F, CHEN K M, et al. Electrochemical properties of α⁃MoO3⁃coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li⁃ion batteries[J]. Electrochimica Acta, 2015, 176: 1171⁃1181.
|
32 |
DUAN J G, WU C, CAO Y B, et al. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano⁃sized LiMnPO4 coating[J]. Electrochimica Acta, 2016, 221: 14⁃22.
|
33 |
ZHAO R R,LIANG J X, HUANG J J, et al. Improving the Ni⁃rich LiNi0.5Co0.2Mn0.3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4[J]. Journal of Alloys and Compounds, 2017, 724: 1109⁃1116.
|
34 |
王可珍, 李芳, 勾路路. 锂离子正极三元材料的制备与改性研究[J]. 当代化工, 2014, 43(12): 2526⁃2528.
|
|
WANG K Z, LI F, GOU L L. Research progress in synthesis and modification of Li⁃ion cathode ternary materials[J]. Contemporary Chemical Industry, 2014, 43(12): 2526⁃2528.
|
35 |
王彪, 刘庆旺, 范振忠, 等. 石墨烯衍生物在油水分离中的应用进展[J]. 东北石油大学学报, 2020, 44(4): 66⁃71.
|
|
WANG B, LIU Q W, FAN Z Z, et al. Application progress of graphene derivatives in oil⁃water separation[J]. Journal of Northeast Petroleum University, 2020, 44(4): 66⁃71.
|
36 |
屈炜佳, 安玉秀. 石墨烯在石油行业中的应用与展望[J]. 油田化学, 2018, 35(3): 533⁃537.
|
|
QU W J, AN Y X. Applications and prospects of graphene in oilfield[J]. Oilfield Chemistry, 2018, 35(3): 533⁃537.
|
37 |
WANG H, LIAO X Z, YANG Y, et al. Large⁃scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565.
|