1 |
Chen D K,Chen S Y,Jin H,et al.The impact of energy regulation on energy intensity and energy structure:Firm⁃level evidence from China[J].China Economic Review,2020,59:101351.
|
2 |
陆之毅.纳米阵列合成及其电化学性能研究[D].北京:北京化工大学,2015.
|
3 |
郭博文,罗聃,周红军,等.可再生能源电解制氢技术及催化剂的研究进展[J].化工进展,2021,40(6):2933⁃2951.
|
|
Guo B W,Luo D,Zhou H J,et al.Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J].Chemical Industry and Engineering Progress,2021,40(6):2933⁃2951.
|
4 |
Brauns J,Turek T.Alkaline water electrolysis powered by renewable energy:A review[J].Processes,2020,8(2):248.
|
5 |
Zeng K,Zhang D K.Recent progress in alkaline water electrolysis for hydrogen production and applications[J].Progress in Energy and Combustion Science,2010,36(3):307⁃326.
|
6 |
马晓锋,张舒涵,何勇,等.PEM电解水制氢技术的研究现状与应用展望[J].太阳能学报,2022,43(6):420⁃427.
|
|
Ma X F,Zhang S H,He Y,et al.Research status and application prospect of PEM water electrolysis technology for hydrogen production[J].Acta Energiae Solaris Sinica,2022,43(6):420⁃427.
|
7 |
Reza A,Brian P,Lin S,et al.A roadmap to low⁃cost hydrogen with hydroxide exchange membrane electrolyzers[J].Advanced Materials,2019,31(31):1805876.
|
8 |
Anwar S,Khan F,Zhang Y H,et al.Recent development in electrocatalysts for hydrogen production through water electrolysis[J].International Journal of Hydrogen Energy,2021,46(63):32284⁃32317.
|
9 |
Ursua A,Gandia L M,Sanchis P,et al.Hydrogen production from water electrolysis:Current status and future trends[J].Proceedings of the IEEE,2012,100(2):410⁃426.
|
10 |
Khatib F N,Wilberforce T,Ijaodol O,et al.Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms:A review[J].Renewable and Sustainable Energy Reviews,2019,111:1⁃14.
|
11 |
刘玮,万燕鸣,熊亚林,等.碳中和目标下电解水制氢关键技术及价格平准化分析[J].电工技术学报,2022,37(11):2888⁃2896.
|
|
Liu W,Wan Y M,Xiong Y L,et al.Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J].Transactions of China Electrotechnical Society,2022,37(11):2888⁃2896.
|
12 |
孙培锋,吴守城,卢海勇,等.新能源制氢及氢能应用浅述[J].能源研究与信息,2021,37(4):207⁃213.
|
|
Sun P F,Wu S C,Lu H Y,et al.Hydrogen production from new energy and its application[J].Energy Research and Information,2021,37(4):207⁃213.
|
13 |
Vincent I,Kruger A,Bessarabov D,et al.Hydrogen production by water electrolysis with an ultrathin anion⁃exchange membrane (AEM)[J].International Journal of Electrochemical Science,2018,13(12):11347⁃11358.
|
14 |
Park J E,Kang S Y,Oh S H,et al.High⁃performance anion exchange membrane water electrolysis[J].Electrochimica Acta,2019,295:99⁃106.
|
15 |
Chen P J,Hu X L.High⁃efficiency anion exchange membrane water electrolysis employing non⁃noble metal catalysts[J].Advanced Energy Materials,2020,10(39):2002285.
|
16 |
Barbir F.PEM electrolysis for production of hydrogen from renewable energy sources[J].Solar Energy,2005,78(5):661⁃669.
|
17 |
Carmo M,Fritz D L,Merge J,et al.A comprehensive review on PEM water electrolysis[J].International Journal of Hydrogen Energy,2013,38(12):4901⁃4934.
|
18 |
温昶,张博涵,王雅钦,等.高效质子交换膜电解水制氢技术的研究进展[J].华中科技大学学报(自然科学版),2023,51(1):111⁃122.
|
|
Wen C,Zhang B H,Wang Y Q,et al.Research progress of high efficiency proton exchange membrane water electrolysis technology[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2023,51(1):111⁃122.
|
19 |
米万良,荣峻峰.质子交换膜(PEM)水电解制氢技术进展及应用前景[J].石油炼制与化工,2021,52(10):78⁃87.
|
|
Mi W L,Rong J F.Progress and application prospect of proton exchange membrane (PEM) hydroelectrolysis for hydrogen production[J].Petroleum Processing and Petrochemicals,2021,52(10):78⁃87.
|
20 |
杜迎晨,雷浩,钱余海,等.电解水制氢技术概述及发展现状[J].上海节能,2021(8):824⁃831.
|
|
Du Y C,Lei H,Qian Y H,et al.Technology overview and development status of hydrogen production from water electrolysis[J].Shanghai Energy Conservation,2021(8):824⁃831.
|
21 |
张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778⁃787.
|
|
Zhang W Q,Yu B,Chen J,et al.Hydrogen production through solid oxide electrolysis at elevated temperatures[J].Progress in Chemistry,2008,20(5):778⁃787.
|
22 |
Kim J,Jun A,Gwon O,et al.Hybrid⁃solid oxide electrolysis cell:A new strategy for efficient hydrogen production[J].Nano Energy,2018,44:121⁃126.
|
23 |
陈彬,谢和平,刘涛,等.碳中和背景下先进制氢原理与技术研究进展[J].工程科学与技术,2022,54(1):106⁃116.
|
|
Chen B,Xie H P,Liu T,et al.Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality[J].Advanced Engineering Sciences,2022,54(1):106⁃116.
|
24 |
徐雯雯.纳米阵列的表面调控及相关电催化性能研究[D].北京:北京化工大学,2019.
|
25 |
孟凡,张惠铃,姬姗姗,等.高效电解水制氢发展现状与技术优化策略[J].黑龙江大学自然科学学报,2021,38(6):702⁃713.
|
|
Meng F,Zhang H L,Ji S S,et al.Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis[J].Journal of Natural Science of Heilongjiang University,2021,38(6):702⁃713.
|
26 |
Yin Y,Han J C,Zhang Y M,et al.Contributions of phase,sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J].Journal of the American Chemical Society,2016,138(25):7965⁃7972.
|
27 |
Deng D H,Novoselov K S,Fu Q,et al.Catalysis with two⁃dimensional materials and their heterostructures[J].Nature Nanotechnology,2016,11(3):218⁃230.
|
28 |
Liu D B,Li X Y,Chen S M,et al.Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J].Nature Energy,2019,4(6):512⁃518.
|
29 |
Zhang L,Wang Q,Si R T,et al.New insight of pyrrole⁃like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms[J].Small,2021,17(16):2004453.
|
30 |
Yin X P,Wang H J,Tang S F,et al.Engineering the coordination environment of single⁃atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J].Angewandte Chemie,2018,57(30):9382⁃9386.
|
31 |
Li F,Han G F,Bu Y F,et al.Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis[J].Nano Energy,2022,93:106819.
|
32 |
Li Q,Cheng W Y,Zeng C,et al.Facile and rapid synthesis of Pt⁃NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution[J].International Journal of Hydrogen Energy,2022,47(12):7504⁃7510.
|
33 |
蔡文斌.贵金属基催化剂的制备及其电解水性能研究[D].合肥:中国科学技术大学,2021.
|
34 |
Wu Q L,Luo M,Han J H,et al.Identifying electrocatalytic sites of the nanoporous copper⁃ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte[J].ACS Energy Letters,2020,5(1):192⁃199.
|
35 |
Li Y,Luo Y T,Zhang Z Y,et al.Implanting Ru nanoclusters into N⁃doped graphene for efficient alkaline hydrogen evolution[J].Carbon,2021,183:362⁃367.
|
36 |
Li F,Han G F,Noh H J,et al.Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media[J].Advanced Materials,2018,30(44):1803676.
|
37 |
Kong D S,Cha J J,Wang H T,et al.First⁃row transition metal dichalcogenide catalysts for hydrogen evolution reation[J].Energy & Environment Science,2013,6(12):3553⁃3558.
|
38 |
Shao Q,Wang Y,Yang S Z,et al.Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis[J].ACS Nano,2018,12(11):11625⁃11631.
|
39 |
Yang L,Zhou H,Qin X,et al.Cathodic electrochemical activation of Co3O4 nanoarrays:A smart strategy to significantly boost the hydrogen evolution activity[J].Chemical Communications,2018,54(17):2150⁃2153.
|
40 |
Begum H,Ahmed M S,Jeon S,et al.δ⁃MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction[J].Electrochimica Acta,2019,296:235⁃242.
|
41 |
Wang Y,Liu J C,Liao Y F,et al.Hetero⁃structured V⁃Ni3S2@NiOOH core⁃shell nanorods from an electrochemical anodization for water splitting[J].Journal of Alloys and Compounds,2021,856:158219.
|
42 |
An L,Feng J R,Zhang Y,et al.Epitaxial heterogeneous interfaces on N⁃NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting[J].Advanced Functional Materials,2019,29(1):1805298.
|
43 |
Xie J F,Xie Y.Transition metal nitrides for electrocatalytic energy conversion:Opportunities and challenges[J].Chemistry⁃A European Journal,2016,22(11):3588⁃3598.
|
44 |
Abghoui Y,Skulason E.Hydrogen evolution reaction catalyzed by transition⁃metal nitrides[J].Journal of Physical Chemistry C,2017,121(43):24036⁃24045.
|
45 |
Popczun E J,Mckone J R,Read C G,et al.Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J].Journal of the American Chemistry Society,2013,135(25):9267⁃9270.
|
46 |
Kibsgaard J,Tsai C,Chan K,et al.Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J].Energy Environmental Science,2015,8(10):3022⁃3029.
|
47 |
Tang C,Asiri A M,Luo Y L,et al.Electrodeposited Ni⁃P alloy nanoparticle films for efficiently catalyzing hydrogen and oxygen⁃evolution reactions[J].Chemnanomat,2015,1(8):558⁃561.
|
48 |
Jin H Y,Liu X,Chen S M,et al.Heteroatom⁃doped transition metal electrocatalysts for hydrogen evolution reaction[J].ACS Energy Letters,2019,4(4):805⁃810.
|
49 |
Wang L X,Li Y,Xia M R,et al.Ni nanoparticles supported on graphene layers:An excellent 3D electrode for hydrogen evolution reaction in alkaline solution[J].Journal of Power Sources,2017,347:220⁃228.
|
50 |
Gong M,Zhou W,Tsai M C,et al.Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J].Nature Communications,2014,5:4695.
|
51 |
Lü Q L,Yang L,Wang W,et al.One⁃step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting[J].Journal of Materials Chemistry A,2019,7(3):1196⁃1205.
|
52 |
Zhang T,Wu M Y,Yan D Y,et al.Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J].Nano Energy,2018,43:103⁃109.
|
53 |
Liu D L,Zhang C,Yu Y F,et al.Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self⁃supported mesoporous spinel oxide nanowire arrays[J].Nano Research,2018,11(2):603⁃613.
|
54 |
Joo J,Kim T,Lee J,et al.Morphology⁃controlled metal sulfides and phosphides for electrochemical water splitting[J].Advanced Materials,2019,31(14):1806682.
|
55 |
Zhang J,Wang T,Pohl D,et al.Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall⁃water⁃splitting activity[J].Angewandte Chemie⁃International Edition,2016,55(23):6702⁃6707.
|
56 |
Zhong X Y,Tang J,Wang J W,et al.3D heterostructured pure and N⁃doped Ni3S2/VS2 nanosheets for high efficient overall water splitting[J].Electrochimica Acta,2018,269:55⁃61.
|
57 |
Li H,Tasi C,Koh A L,et al.Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J].Nature Materials,2016,15(3):48⁃53.
|
58 |
Tian T,Huang L,Ai L H,et al.Surface anion⁃rich NiS2 hollow microspheres derived from metal⁃organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction[J].Journal of Materials Chemistry A,2017,5(39):20985⁃20992.
|
59 |
Feng L L,Yu G T,Wu Y Y,et al.High⁃index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J].Journal of the American Chemical Society,2015,137(44):14023⁃14026.
|
60 |
Pei Y,Cheng Y,Chen J Y,et al.Recent developments of transition metal phosphides as catalysts in the energy conversion field[J].Journal of Materials Chemistry A,2018,6(46):23220⁃23243.
|
61 |
Liu Q,Tang C,Lu S Y,et al.Rationally tuning the atomic ratio of electrodeposited NiP for greatly enhanced hydrogen evolution in alkaline media[J].Chemical Communications,2018,54(87):2408⁃2411.
|
62 |
Callejas J F,Read C G,Popczun E J,et al.Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP[J].Chemistry of Materials,2015,27(10):3769⁃3774.
|
63 |
Mo Q L,Zhang W B,He L Q,et al.Bimetallic Ni2- xCoxP/N⁃doped carbon nanofibers:Solid⁃solution⁃alloy engineering toward efficient hydrogen evolution[J].Applied Catalysis B:Environmental,2019,224:620⁃627.
|
64 |
Kumar A,Bui V Q,Lee J,et al.Modulating interfacial charge density of NiP2⁃FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution[J].ACS Energy Letters,2021,6(2):354⁃363.
|
65 |
Li S S,Li E Z,An X W,et al.Transition metal⁃based catalysts for electrochemical water splitting at high current density:Current status and perspectives[J].Nanoscale,2021,13(30):12788⁃12817.
|
66 |
Chen Z J,Duan X G,Wei W,et al.Recent advances in transition metal⁃based electrocatalysts for alkaline hydrogen evolution[J].Journal of Materials Chemistry A,2019,7:14971.
|
67 |
Jin H Y,Liu X,Vasileff A,et al.Single⁃crystal nitrogen⁃rich two⁃dimensional Mo5N6 nanosheets for efficient and stable seawater splitting[J].ACS Nano,2019,12(12):12761⁃12769.
|
68 |
Ma Y M,He Z D,Wu Z F,et al.Galvanic⁃replacement mediated synthesis of copper⁃nickel nitrides as electrocatalyst for hydrogen evolution reaction[J].Journal of Materials Chemistry A,2017,5(47):24850⁃24858.
|
69 |
Wu A P,Xie Y,Ma H,et al.Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J].Nano Energy,2018,44:353⁃363.
|
70 |
Dai L M.Functionalization of graphene for efficient energy conversion and storage[J].Accounts of Chemical Research,2013,46(1):31⁃42.
|
71 |
Ito Y,Cong W T,Fujita T,et al.High catalytic activity of nitrogen and sulfur Co⁃doped nanoporous graphene in the hydrogen evolution reaction[J].Angewandte Chemie⁃International Edition,2015,54(7):2131⁃2136.
|
72 |
Ersozoglu M G,Gursu H,Gumrukcu S,et al.Single step electrochemical semi⁃exfoliated S⁃doped graphene⁃like structures from commercial carbon fiber as efficient metal⁃free catalyst for hydrogen evolution reaction[J].ChemElectroChem,2022,9(2):e202101455.
|
73 |
Zhang J T,Dai L M.Nitrogen,phosphorus,and fluorine tri⁃doped graphene as a multifunctional catalyst for self⁃powered electrochemical water splitting[J].Angewandte Chemie⁃International Edition,2016,55(42):13296⁃13300.
|