| [1] |
YAN Y Q, CHEN Y, WANG Z, et al. Electrochemistry‑assisted selective butadiene hydrogenation with water[J]. Nature Communications, 2023, 14(1): 2106.
|
| [2] |
GAO M S, ZHANG G H, ZHAO L, et al. Research progress of basic catalyst used in catalytic cracking for olefin production and heavy oil utilization[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1215‑1226.
|
| [3] |
龚亚兵, 沈健, 张继国, 等. F‑T合成馏分油催化裂解多产低碳烯烃[J]. 石油化工高等学校学报, 2019, 32(1): 24‑29.
|
|
GONG Y B, SHEN J, ZHANG J G, et al. Catalytic pyrolysis of fischer‑tropsch synthetic distillate oil to produce more light olefins[J]. Journal of Petrochemical Universities, 2019, 32(1): 24‑29.
|
| [4] |
YANG P, YAN S Y, HE N, et al. The effect of accessibility to acid sites in Y zeolites on ring opening reaction in light cycle oil hydrocracking[J]. Chemical Synthesis, 2025, 5(1): 24.
|
| [5] |
LIU Y Q, YU S Q, SUN M, et al. Research progress on catalysts and additives for increasing light olefins production in fluid catalytic cracking unit[J]. Petroleum Processing and Petrochemicals, 2025, 56(6): 156‑165.
|
| [6] |
ZHOU M, XUE M Y, HUANG P Z, et al. Design and synthesis of bis‑β‑ketoimine binuclear titanium complex isomers to probe bimetallic synergistic effect for ethylene polymerization[J]. Chinese Journal of Polymer Science, 2025, 43(5): 756‑768.
|
| [7] |
DERRIEN M L. Chapter 18 selective hydrogenation applied to the refining of petrochemical raw materials produced by steam cracking[J]. Studies in Surface Science and Catalysis, 1986, 27: 613‑666.
|
| [8] |
LU F F, XU Y, JIANG X, et al. Biosynthesized Pd/γ‑Al2O3 catalysts for low‑temperature 1, 3‑butadiene hydrogenation: The effect of calcination atmosphere[J]. New Journal of Chemistry, 2017, 41(21): 13036‑13042.
|
| [9] |
ZHOU T Q, YAO P, GAO H, et al. Al2O3‑flower anchoring Pd catalyst for acetylene selective hydrogenation: A compartmentalizing strategy promotes metal dispersion and maintains stability[J]. Catalysis Letters, 2024, 154(8): 4320‑4331.
|
| [10] |
CUNHA A F C. Hydrogen production by catalytic decomposition of methane[D]. Porto: University of Porto, 2009.
|
| [11] |
HOSSAIN M R, TRENARY M. Selective hydrogenation of 1, 3‑butadiene over a Pd/Cu(111) single atom alloy surface[J]. The Journal of Physical Chemistry C, 2024, 128(45): 19204‑19209.
|
| [12] |
WANG W H, JIANG B, WANG Z, et al. Alloying effect enhanced bimetallic Ni‑Fe/TiO2 catalysts for selective hydrogenation of 1, 3‑butadiene in the presence of an excess of propylene[J]. Molecular Catalysis, 2023, 550: 113602.
|
| [13] |
MCCUE A J, MCRITCHIE C J, SHEPHERD A M, et al. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation[J]. Journal of Catalysis, 2014, 319: 127‑135.
|
| [14] |
ZHUO H Y, YU X H, YU Q, et al. Selective hydrogenation of acetylene on graphene‑supported non‑noble metal single‑atom catalysts[J]. Science China Materials, 2020, 63(9): 1741‑1749.
|
| [15] |
ZHANG R G, ZHANG J, ZHAO B, et al. Insight into the effects of Cu component and the promoter on the selectivity and activity for efficient removal of acetylene from ethylene on Cu‑based catalyst[J]. The Journal of Physical Chemistry C, 2017, 121(50): 27936‑27949.
|
| [16] |
TOTARELLA G, BEERTHUIS R, MASOUD N, et al. Supported Cu nanoparticles as selective and stable catalysts for the gas phase hydrogenation of 1, 3‑butadiene in alkene‑rich feeds[J]. The Journal of Physical Chemistry C, 2021, 125(1): 366‑375.
|
| [17] |
PUTRO W S, KOJIMA T, HARA T, et al. Selective hydrogenation of unsaturated carbonyls by Ni‑Fe‑based alloy catalysts[J]. Catalysis Science & Technology, 2017, 7(16): 3637‑3646.
|
| [18] |
WANG Z, BROURI D, CASALE S, et al. Exploration of the preparation of Cu/TiO2 catalysts by deposition‑precipitation with urea for selective hydrogenation of unsaturated hydrocarbons[J]. Journal of Catalysis, 2016, 340: 95‑106.
|
| [19] |
HU N, LI X Y, LIU S M, et al. Enhanced stability of highly‑dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation[J]. Chinese Journal of Catalysis, 2020, 41(7): 1081‑1090.
|
| [20] |
AI L, DING H, JIAO Y T, et al. Promoting effect of hierarchical zeolites on Ag catalysts for the gas‑phase selective hydrogenation of α‑methylacrolein[J]. New Journal of Chemistry, 2025, 49(14): 5962‑5971.
|
| [21] |
YUAN H, WANG Z, JIN S J, et al. Highly enhanced catalytic stability of copper by the synergistic effect of porous hierarchy and alloying for selective hydrogenation reaction[J]. Catalysts, 2022, 12(1): 12.
|
| [22] |
WANG Z, HONG Y, CHENG B C, et al. Nano shielder of rare‑earth metal oxide overlay promotes ultra‑stable H2 production on Pt/γ‑Mo2N[J]. Chemical Synthesis, 2025, 5(3): 58.
|
| [23] |
LU W J, ZHANG J W, ZHANG S Q, et al. Synthesis of linear alkylbenzenes over beta zeolites with enhanced transport and surface activity[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12275‑12281.
|
| [24] |
吴佳佳, 鲁树亮, 田保亮. 复合雷尼铜催化剂在乙酸酯加氢中的应用[J]. 化工进展, 2020, 39(2): 533‑538.
|
|
WU J J, LU S L, TIAN B L. Application of raney Cu composite catalysts in the hydrogenation of ethyl acetate[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 533‑538.
|
| [25] |
吴佳佳, 乐毅, 鲁树亮, 等. Raney Cu系催化剂在C4加氢除炔中的性能研究[J]. 石油化工, 2023, 52(4): 446‑453.
|
|
WU J J, YUE Y, LU S L, et al. Performance of raney Cu catalyst in C4 hydrogenation for acetylene removal[J]. Petrochemical Technology, 2023, 52(4): 446‑453.
|
| [26] |
周媚, 曾浩桀, 卢俊宁, 等. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76‑86.
|
|
ZHOU M, ZENG H J, LU J N, et al. Progress in the synthesis of hierarchical zeolites for diffusion intensification[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 76‑86.
|
| [27] |
MILINA M, MITCHELL S, CRIVELLI P, et al. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts[J]. Nature Communications, 2014, 5(1): 3922.
|
| [28] |
KÄRGER J, VALIULLIN R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement[J]. Chemical Society Reviews, 2013, 42(9): 4172‑4197.
|
| [29] |
XIA S X, YUAN Z L, WANG L N, et al. Hydrogenolysis of glycerol on bimetallic Pd‑Cu/solid‑base catalysts prepared via layered double hydroxides precursors[J]. Applied Catalysis A: General, 2011, 403(1‑2): 173‑182.
|
| [30] |
HOSSAIN M R, ARSHADI A, XU Y, et al. Structure of chemisorbed 1, 3‑butadiene on the Cu (111) surface[J]. Physical Chemistry Chemical Physics, 2025, 27(28): 14906‑14913.
|
| [31] |
YANG Q C, HOU R J, SUN K N. Tuning butene selectivities by Cu modification on Pd‑based catalyst for the selective hydrogenation of 1, 3‑butadiene[J]. Journal of Catalysis, 2019, 374: 12‑23.
|
| [32] |
刘奕, 杨占林, 姜虹,等. 加氢催化剂多尺度设计研究进展[J]. 当代化工, 2021, 50(5): 1193‑1199.
|
|
LIU Y, YANG Z L, JIANG H, et al. Research progress in multi‑scale design of hydrogenation catalyst[J]. Contemporary Chemical Industry, 2021, 50(5): 1193‑1199.
|
| [33] |
时浩峰, 孙明慧, 余申,等. 自模板法制备大孔‑微孔等级孔TS‑1分子筛及其1‑己烯环氧化性能[J]. 石油学报(石油加工), 2024, 40(6): 1485‑1496.
|
|
SHI H F, SUN M H, YU S, et al. Synthesis of hierarchical macro‑microporous TS‑1 zeolite by self‑template method for efficient catalytic epoxidation of 1‑Hexene[J]. Acta Petrolei Sinica (Petroleum Processing Section),2024,40(6):1485‑1496.
|
| [34] |
赵庆辉, 马宏斌, 倪晨,等. 纳米铜基催化剂体系作用稠油水热裂解降黏改质[J]. 油田化学, 2025, 42(3):496‑501.
|
|
ZHAO Q H, MA H B, NI C, et al. Reducing viscosity and upgrading of heavy oil by aquathermolysis with nano‑copper based catalyst[J]. Oilfield Chemistry,2025, 42(3):496‑501.
|