| [1] |
GOLLAKOTA A R K,SHU C M.Covid-19 and energy sector: Unique opportunity for switching to clean energy[J].Gondwana Research,2023,114:93-116.
|
| [2] |
BREYER C,GERLACH A.Global overview on grid-parity[J].Progress in Photovoltaics:Research and Applications,2013,21(1):121-136.
|
| [3] |
CHU S,MAJUMDAR A.Opportunities and challenges for a sustainable energy future[J].Nature,2012,488(7411):294-303.
|
| [4] |
KAMAT P V.Meeting the clean energy demand: Nanostructure architectures for solar energy conversion[J].The Journal of Physical Chemistry C,2007,111(7):2834-2860.
|
| [5] |
ETACHERI V,MAROM R,ELAZARI R,et al.Challenges in the development of advanced Li-ion batteries:A review[J].Energy & Environmental Science,2011,4(9):3243-3262.
|
| [6] |
LI M,LU J,CHEN Z W,et al.30 years of lithium-ion batteries[J].Advanced Materials,2018,30(33):1800561.
|
| [7] |
GOODENOUGH J B.Evolution of strategies for modern rechargeable batteries[J].Accounts of Chemical Research,2013,46(5):1053-1061.
|
| [8] |
王奥诚,王春雅,徐春明,等.液态有机氢载体体系及其加氢-脱氢催化剂研究进展[J/OL].石油学报(石油加工),2025:1-18(2025-06-16)[2025-08-16].https://link.cnki.net/urlid/11.2129.TE.20250616.1432.002.
|
|
WANG A C,WANG C Y,XU C M,et al.Research progress in liquid organic hydrogen carrier systems and their hydrogenation-dehydrogenation catalysts[J/OL].Acta Petrolei Sinica(Petroleum Processing Section),2025:1-18(2025-06-16)[2025-08-16].https://link.cnki.net/urlid/11.2129.TE.20250616.1432.002.
|
| [9] |
黄春燕,燕思吟,赖芳,等.类芬顿催化膜的制备及其处理有机废水的研究进展[J].石油炼制与化工,2024,55(2):91-100.
|
|
HUANG C Y,YAN S Y,LAI F,et al.Progress in the preparation of Fenton-like catalyst membranes and their application in organic wastewater treatment[J].Petroleum Processing and Petrochemicals,2024,55(2):91-100.
|
| [10] |
解自奇,谭玉婷,赵妮,等.Mg2+掺杂对富锂层状氧化物材料Li1.2Mn0.54Ni0.13Co0.13O2的影响[J].辽宁石油化工大学学报,2024,44(2):22-28.
|
|
XIE Z Q,TAN Y T,ZHAO N,et al.Effect of Mg2+ doping on Li-rich layered oxides materials Li1.2Mn0.54Ni0.13Co0.13O2[J].Journal of Liaoning Petrochemical University,2024,44(2):22-28.
|
| [11] |
WANG J,WANG K,WANG F B,et al.Bioinspired copper catalyst effective for both reduction and evolution of oxygen[J].Nature Communications,2014,5:5285.
|
| [12] |
WEN Y Y,MA C,WEI Z T,et al.FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction[J].RSC Advances,2019,9(24):13424-13430.
|
| [13] |
JIANG L L,DUAN J J,ZHU J W,et al.Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis[J].ACS Nano,2020,14(2):2436-2444.
|
| [14] |
LI Z L,ZHUANG Z C,LV F,et al.The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis:Fe 3d electron delocalization matters[J].Advanced Materials,2018,30(43):1803220.
|
| [15] |
CHEN J N,YUAN X L,LYU F L,et al.Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J].Journal of Materials Chemistry A,2019,7(3):1281-1286.
|
| [16] |
XIE X H,CHEN S G,DING W,et al.An extraordinarily stable catalyst:Pt NPs supported on two-dimensional Ti3C2X2(X=OH,F) nanosheets for oxygen reduction reaction[J].Chemical Communications (Cambridge,England),2013,49(86):10112-10114.
|
| [17] |
ZHANG Z W,LI H N,ZOU G D,et al.Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity[J].ACS Sustainable Chemistry & Engineering,2016,4(12):6763-6771.
|
| [18] |
YUAN K,LÜTZENKIRCHEN-HECHT D,LI L B,et al.Boosting oxygen reduction of single iron active sites via geometric and electronic engineering:Nitrogen and phosphorus dual coordination[J].Journal of the American Chemical Society,2020,142(5):2404-2412.
|
| [19] |
WEI X Q,SONG S J,WU N N,et al.Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte[J].Nano Energy,2021,84:105840.
|
| [20] |
GONG X F,ZHU J B,LI J Z,et al.Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries[J].Advanced Functional Materials,2021,31(8):2008085.
|
| [21] |
WANG D,XIAO L H,YANG P X,et al.Dual-nitrogen-source engineered Fe-NX moieties as a booster for oxygen electroreduction[J].Journal of Materials Chemistry A,2019,7(18):11007-11015.
|
| [22] |
DU C,GAO Y J,WANG J G,et al.A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air batteries[J].Journal of Materials Chemistry A,2020,8(19):9981-9990.
|
| [23] |
WANG D,XU H,YANG P X,et al.Fe-N4 and Co-N4 dual sites for boosting oxygen electroreduction in Zn-air batteries[J].Journal of Materials Chemistry A,2021,9(23):13678-13687.
|
| [24] |
XU J,LAI S H,QI D F,et al.Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis[J].Nano Research,2021,14(5):1374-1381.
|
| [25] |
GAO S,YANG H,RAO D W,et al.Supercritical CO2 assisted synthesis of highly accessible iron single atoms and clusters on nitrogen-doped carbon as efficient oxygen reduction electrocatalysts[J].Chemical Engineering Journal,2022,433(Part 1):134460.
|
| [26] |
SHI X D,PU Z H,CHI B,et al.Nitrogen and atomic Fe dual-doped porous carbon nanocubes as superior electrocatalysts for acidic H2-O2 PEMFC and alkaline Zn-air battery[J].Journal of Energy Chemistry,2021,59:388-395.
|
| [27] |
MA Y,CHEN D,ZHANG D D,et al.Fe,N-modulated carbon fibers aerogel as freestanding cathode catalyst for rechargeable Zn–air battery[J].Carbon,2022,187:196-206.
|
| [28] |
JIA Y L,ZHANG F S,LIU Q L,et al.Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance[J].Chinese Chemical Letters,2022,33(2):1070-1073.
|
| [29] |
XU C X,CHEN L,WEN Y L,et al.A co-operative protection strategy to synthesize highly active and durable Fe/N co–doped carbon towards oxygen reduction reaction in Zn–air batteries[J].Materials Today Energy,2021,21:100721.
|