1 |
Wang T,Chen H C,Yu F,et al.Boosting the cycling stability of transition metal compounds⁃based supercapacitors[J].Energy Storage Materials,2019,16:545⁃573.
|
2 |
Pomerantseva E,Bonaccorso F,Feng X L,et al.Energy storage:The future enabled by nanomaterials[J].Science,2019,366:eaan8285.
|
3 |
宋楗,韩乔,杨占旭.NiMoP/C复合材料的制备及其电催化析氢性能[J].石油化工高等学校学报,2022,35(1):1⁃9.
|
|
Song J,Han Q,Yang Z X.Preparation of NiMoP/C composite material and electrocatalytic hydrogen evolution performance[J].Journal of Petrochemical Universities,2022,35(1):1⁃9.
|
4 |
Zhang S W,Yin B S,Liu X X,et al.A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches[J].Nano Energy,2019,59:41⁃49.
|
5 |
Shao Y L,El⁃Kady M F,Sun J Y,et al.Design and mechanisms of asymmetric supercapacitors[J].Chemical Reviews,2018,118(18):9233⁃9280.
|
6 |
Li G F,Cui X,Song B,et al.One⁃pot synthesis of Cu⁃doped Ni3S2 nano⁃sheet/rod nanoarray for high performance supercapacitors[J].Chemical Engineering Journal,2020,388:124319.
|
7 |
Ren F Y,Ji Y J,Tan S F,et al.Sponge⁃like NiCo2S4 nanosheets supported on nickel foam as high⁃performance electrode materials for asymmetric supercapacitors[J].Inorganic Chemistry Frontiers,2021,8(1):72⁃78.
|
8 |
Ma Z Q,Sun Z Q,Jiang H,et al.Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high⁃rate supercapacitors[J].Applied Surface Science,2020,533:147521.
|
9 |
Zhang Y G,Zhang Y H,Zhang H F,et al.Defect engineering in metal sulfides for energy conversion and storage[J].Coordination Chemistry Reviews,2021,448:214147.
|
10 |
Yu X Y,David Lou X W.Mixed metal sulfides for electrochemical energy storage and conversion[J].Advanced Energy Materials,2018,8(3):1701592.
|
11 |
Liu Z J,Wang G J,Zhu X Y,et al.Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction[J].Angewandte Chemie International Edition,2020,59(12):4736⁃4742.
|
12 |
Song L L,Wang Q D,Ye X Y,et al.Sulfide⁃fixed intrinsic porous NiCoP for boosting high capacitance and long⁃term stability[J].ACS Materials Letters,2021,3(7):1016⁃1024.
|
13 |
Zheng Y,Deng T,Zhang W,et al.Optimizing the micropore⁃to⁃mesopore ratio of carbon⁃fiber⁃cloth creates record⁃high specific capacitance[J].Journal of Energy Chemistry,2020,47:210⁃216.
|
14 |
Tang Y Q,Shen H M,Cheng J Q,et al.Fabrication of oxygen⁃vacancy abundant NiMn⁃layered double hydroxides for ultrahigh capacity supercapacitors[J].Advanced Functional Materials,2020,30(11):1908223.
|
15 |
Yang H,Gao S,Rao D W,et al.The regulation mechanism of cationic substitution in morphology⁃controlled oxy⁃spinel for oxygen evolution reaction[J].Journal of Catalysis,2022,407:221⁃231.
|
16 |
Du X Q,Ding Y Y,Su H,et al.Effect of cation substitution on the water splitting performance of spinel cobaltite MCo2S4 (M = Ni,Cu and Co)[J].International Journal of Hydrogen Energy,2020,45:12012⁃12025.
|
17 |
Liu S D,Ni D X,Li H F,et al.Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn,Ni,Cu,and Co)[J].Journal of Materials Chemistry A,2018,6:10674.
|
18 |
Tao L M,Guo P H,Zhu W L,et al.Highly efficient mixed⁃metal spinel cobaltite electrocatalysts for the oxygen evolution reaction[J].Chinese Journal of Catalysis,2020,41(12):1855⁃1863.
|
19 |
Tan P,Wu Z,Chen B,et al.Cation⁃substitution⁃tuned oxygen electrocatalyst of spinel cobaltite MCo2O4 (M = Fe,Co,and Ni) hexagonal nanoplates for rechargeable Zn⁃air batteries[J].Journal of the Electrochemical Society,2019,166(14):A3448⁃A3455.
|
20 |
Zhao J,Ge C X,Zhao Z Y,et al.Sub⁃nanometer⁃scale fine regulation of interlayer distance in Ni⁃Co layered double hydroxides leading to high⁃rate supercapacitors[J].Nano Energy,2020,76:105026.
|
21 |
Pan Q F,Zheng F H,Deng D F,et al.Interlayer spacing regulation of NiCo⁃LDH nanosheets with ultrahigh specific capacity for battery⁃type supercapacitors[J].ACS Applied Materials & Interfaces,2021,13(47):56692⁃56703.
|