Journal of Petrochemical Universities ›› 2022, Vol. 35 ›› Issue (5): 12-24.DOI: 10.3969/j.issn.1006-396X.2022.05.002
Previous Articles Next Articles
Lü Yu1,2(), Xiaoning Wang1, Zhangxiong Wu1()
Received:
2022-08-31
Revised:
2022-09-20
Published:
2022-10-25
Online:
2022-11-22
Contact:
Zhangxiong Wu
通讯作者:
吴张雄
作者简介:
吕玉(1999⁃),女,硕士研究生,从事钴基催化剂的合成与应用方面的研究;E⁃mail:ly13041427529@163.com。
基金资助:
CLC Number:
Lü Yu, Xiaoning Wang, Zhangxiong Wu. Research Progress in Synthesis of Cobalt⁃Based Catalysts and Peroxymonosulfate Activation[J]. Journal of Petrochemical Universities, 2022, 35(5): 12-24.
吕玉, 王晓宁, 吴张雄. 钴基催化剂的合成及其活化过一硫酸盐的研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 12-24.
Fig.2 Schematic illustration of the synthetic process of dried plum?like, porous, and durian?like microsphere morphology Co3O4 particles via ultrasonic spray pyrolysis
污染物 | 催化剂 | c(PMS)/(mmol | pH | 温度/ ℃ | 时间/min | 去除率/% | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
酸性橙7 | 20 | NT⁃Co3O4 | 0.05 | 0.100 | 8.00 | 25 | 30 | 89.0 | [ | |
酸性橙7 | 20 | CoFe2O4 | 0.50 | 0.800 | 6.30 | 27 | 40 | 96.0 | [ | |
罗丹明B | 20 | Co3O4⁃0.5RHA | 0.10 | 0.50 | 6.00 | 20 | 60 | 96.3 | [ | |
罗丹明B | 20 | CoFe2O4/Ag | 0.20 | 1.00 | 6.50 | - | 14 | 100.0 | [ | |
4⁃氯酚 | 50 | MS⁃VO⁃Co3O4 | 0.05 | 0.20 | - | 20 | 20 | 98.4 | [ | |
双酚A | 25 | Co3O4⁃MnO2/BC | 0.10 | 1.000 | 7.00 | 25 | 25 | 91.0 | [ | |
双酚A | 20 | (Co、Mn)3O4 | 0.10 | 0.325 | 9.70 | 25 | 5 | 99.0 | [ | |
2,4⁃二氯酚 | 50 | FCOVNPs | 0.20 | 1.00 | 6.80 | 25±1 | 90 | 97.3 | [ | |
磺基水杨酸 | 10 | Co3O4 | 0.15 | 0.15 | 7.00 | 25 | 120 | 100.0 | [ | |
氯霉素 | 50 | Co3O4/BC | 0.20 | 10.000 | 7.00 | - | 10 | 97.6±1.2 | [ | |
环丙沙星 | 20 | Co3O4/CB | 0.20 | 0.50 | 5.98 | 25 | 30 | 93.0 | [ | |
三氯生 | 10 | Co2Mn1O4 | 0.02 | 0.05 | 6.80 | 25 | 30 | 96.4 | [ | |
诺氟沙星 | 20 | NiCo2O4 | 0.05 | 0.670 | 7.00 | 25 | 90 | 97.5 | [ |
Table 1 Applications of some typical cobalt?based catalysts in environmental remediation via PMS activation
污染物 | 催化剂 | c(PMS)/(mmol | pH | 温度/ ℃ | 时间/min | 去除率/% | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
酸性橙7 | 20 | NT⁃Co3O4 | 0.05 | 0.100 | 8.00 | 25 | 30 | 89.0 | [ | |
酸性橙7 | 20 | CoFe2O4 | 0.50 | 0.800 | 6.30 | 27 | 40 | 96.0 | [ | |
罗丹明B | 20 | Co3O4⁃0.5RHA | 0.10 | 0.50 | 6.00 | 20 | 60 | 96.3 | [ | |
罗丹明B | 20 | CoFe2O4/Ag | 0.20 | 1.00 | 6.50 | - | 14 | 100.0 | [ | |
4⁃氯酚 | 50 | MS⁃VO⁃Co3O4 | 0.05 | 0.20 | - | 20 | 20 | 98.4 | [ | |
双酚A | 25 | Co3O4⁃MnO2/BC | 0.10 | 1.000 | 7.00 | 25 | 25 | 91.0 | [ | |
双酚A | 20 | (Co、Mn)3O4 | 0.10 | 0.325 | 9.70 | 25 | 5 | 99.0 | [ | |
2,4⁃二氯酚 | 50 | FCOVNPs | 0.20 | 1.00 | 6.80 | 25±1 | 90 | 97.3 | [ | |
磺基水杨酸 | 10 | Co3O4 | 0.15 | 0.15 | 7.00 | 25 | 120 | 100.0 | [ | |
氯霉素 | 50 | Co3O4/BC | 0.20 | 10.000 | 7.00 | - | 10 | 97.6±1.2 | [ | |
环丙沙星 | 20 | Co3O4/CB | 0.20 | 0.50 | 5.98 | 25 | 30 | 93.0 | [ | |
三氯生 | 10 | Co2Mn1O4 | 0.02 | 0.05 | 6.80 | 25 | 30 | 96.4 | [ | |
诺氟沙星 | 20 | NiCo2O4 | 0.05 | 0.670 | 7.00 | 25 | 90 | 97.5 | [ |
1 | Liu Y,Zhao Y,Wang J L.Fenton/Fenton⁃like processes with in⁃situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants:Advances and prospects[J].Journal of Hazardous Materials,2021,404:124191. |
2 | Ghuge S P,Saroha A K.Catalytic ozonation for the treatment of synthetic and industrial effluents⁃application of mesoporous materials:A review[J].Journal of Environmental Management,2018,211:83⁃102. |
3 | Jiang L B,Yuan X Z,Zeng G M,et al.Metal⁃free efficient photocatalyst for stable visible⁃light photocatalytic degradation of refractory pollutant[J].Applied Catalysis B:Environmental,2018,221:715⁃725. |
4 | Wang J L,Zhuan R.Degradation of antibiotics by advanced oxidation processes:An overview[J].Science of the Total Environment,2020,701:135023. |
5 | Meng F Y,Song M,Song B,et al.Enhanced degradation of Rhodamine B via α⁃Fe2O3 microspheres induced persulfate to generate reactive oxidizing species[J].Chemosphere,2020,243:125322. |
6 | Duan X G,Su C,Miao J,et al.Insights into perovskite⁃catalyzed peroxymonosulfate activation:Maneuverable cobalt sites for promoted evolution of sulfate radicals[J].Applied Catalysis B:Environmental,2018,220:626⁃634. |
7 | Hou J F,He X D,Zhang S Q,et al.Recent advances in cobalt⁃activated sulfate radical⁃based advanced oxidation processes for water remediation:A review[J].Science of the Total Environment,2021,775:145311. |
8 | Ghanbari F,Moradi M.Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants:Review[J].Chemical Engineering Journal,2017,310:41⁃62. |
9 | 汤春妮.四氧化三钴的制备及应用研究进展[J].化学与生物工程,2020,37(11):12⁃19. |
Tang C N.Research progress in preparation of tricobalt tetroxide[J].Chemistry & Bioengineering,2020,37(11):12⁃19. | |
10 | Zou R Y,Zhu L,Luo G L,et al.Arginine⁃assisted thermal decomposition for synthesis of nanosized Co3O4 with enhanced capacitance[J].International Journal of Electrochemical Science,2020,15(1):484⁃492. |
11 | Lü Y Y,Wang Y T,Li H L,et al.MOF⁃derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties[J].ACS Applied Materials Interfaces,2015,7(24):13604⁃13611. |
12 | Tuan D D,Khiem C,Kwon E,et al.Hollow porous cobalt oxide nanobox as an enhanced for activating monopersulfate to degrade 2⁃hydroxybenzoic acid in water[J].Chemosphere,2022,294:133441. |
13 | Tomar D,Jeevanandam P.Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties[J].Journal of Alloys and Compounds,2020,843:155815. |
14 | MirMoghtadaei G,Ghosalya M K,Artiglia L,et al.Strong promoting effect of gold nanoparticles on the CO abatement catalytic activity of CoOx/clay⁃bonded SiC catalysts produced by AA⁃MOCVD method using Co(acac)2 as precursor[J].Chemistry Select,2020,5(44):13878⁃13887. |
15 | Achraf E K,Muhammad W,Patrick M K,et al.Cu⁃promoted cobalt oxide film catalyst for efficient gas emissions abatement[J].Journal of Thermal Science,2019,28(2):225⁃231. |
16 | Maccato C,Bigiani L,Girardi L,et al.Plasma⁃assisted synthesis of Co3O4⁃based electrocatalysts on Ni foam substrates for the oxygen evolution reaction[J].Advanced Materials Interfaces,2021,8(18):2100763. |
17 | Shatrova N,Yudin A,Levina V,et al.Characteristics of Co3O4 and cobalt nanostructured microspheres:Morphology,structure,reduction process,and magnetic properties[J].Materials Research Bulletin,2018,99:189⁃195. |
18 | Li Y,Li X H,Wang Z X,et al.Distinct impact of cobalt salt type on the morphology, microstructure,and electrochemical properties of Co3O4 synthesized by ultrasonic spray pyrolysis[J].Journal of Alloys and Compounds,2017,696:836⁃843. |
19 | Kim R,Jang J S,Kim D H,et al.A general synthesis of crumpled metal oxide nanosheets as superior chemiresistive sensing layers[J].Advanced Functional Materials,2019,29(31):1903128. |
20 | Han H,Kim I,Park S.Thermally templated cobalt oxide nanobubbles on crumpled graphene sheets:A promising non⁃precious metal catalysts for acidic oxygen evolution[J].Electrochimica Acta,2021,382:138277. |
21 | Horlyck J,Sara M,Lovell E C,et al.Effect of metal⁃support interactions in mixed Co/Al catalysts for dry reforming of methane[J].Chem. Cat. Chem.,2019,11(15):3432⁃3440. |
22 | Ullah A K M,Amin F B,Hossain A.Tailoring surface morphology and magnetic property by precipitants concentrations dependent synthesis of Co3O4 nanoparticles[J].Ceramics International,2020,46(17):27892⁃27896. |
23 | Worku A K,Ayele D W,Habtu N G,et al.Engineering Co3O4/MnO2 nanocomposite materials for oxygen reduction electrocatalysis[J].Heliyon,2021,7(9):e08076. |
24 | Thambidurai S,Gowthaman P,Venkatachalam M,et al.Morphology dependent photovoltaic performance of zinc oxide⁃cobalt oxide nanoparticle/nanorod composites synthesized by simple chemical co⁃precipitation method[J].Journal of Alloys and Compounds,2021,852:156997. |
25 | Ji X B,Chen Y X,Paul B,et al.Photocatalytic oxidation of aromatic alcohols over silver supported on cobalt oxide nanostructured catalyst[J].Journal of Alloys and Compounds,2019,783:583⁃592. |
26 | Guo W,Lian X J,Tian Y M,et al.Facile fabrication 1D/2D/3D Co3O4 nanostructure in hydrothermal synthesis for enhanced supercapacitor performance[J].Journal of Energy Storage,2021,38:102586. |
27 | Yetim N K.Hydrothermal synthesis of Co3O4 with different morphology:Investigation of magnetic and electrochemical properties[J].Journal of Molecular Structure,2021,1226:129414. |
28 | Zhang H F,Lu C X,Hou H,et al.Facile morphology⁃controlled synthesis of Co3O4 nanostructure on carbon cloth and their morphology⁃dependent pseudocapacitive performances[J].Journal of Alloys and Compounds,2019,797:970⁃977. |
29 | Li S S,Wang Y,Sun J L,et al.Hydrothermal synthesis of Fe⁃doped Co3O4 urchin⁃like microstructures with superior electrochemical performances[J].Journal of Alloys and Compounds,2020,821:153507. |
30 | Abdel⁃Salam M O,Yoon T.Cobalt⁃ferrite/Ag⁃FMWCNT hybrid nanocomposite catalyst for efficient degradation of synthetic organic dyes via peroxymonosulfate activation[J].Environmental Research,2022,205:112424. |
31 | Siahroudi M G,Daryakenari A A,Molamahaleh Y B,et al.Ethylene glycol assisted solvo⁃hydrothermal synthesis of NGr⁃Co3O4 nanostructures for ethanol electrooxidation[J].International Journal of Hydrogen Energy,2020,45(55):30357⁃30366. |
32 | Chen H Y,Du X M,Sun J L,et al.Simple preparation of ZnCo2O4 porous quasi⁃cubes for high performance asymmetric supercapacitors[J].Applied Surface Science,2020,515:146008. |
33 | Priyadharsini C I,Marimuthu G,Pazhanivel T,et al.Sol⁃Gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications[J].Journal of Sol⁃Gel Science and Technology,2020,96(2):416⁃422. |
34 | Zhi Z J,Wu D,Meng F Y,et al.Facile synthesis of CoFe2O4@BC activated peroxymonosulfate for p⁃nitrochlorobenzene degradation:Matrix effect and toxicity evaluation[J].Science of the Total Environment,2022,828:154275. |
35 | Trusova E A,Kotsareva K V,Kirichenko A N,et al.Synthesis of graphene⁃based nanostructures by the combined method comprising sol⁃gel and sonochemistry techniques[J].Diamond and Related Materials,2018,85:23⁃36. |
36 | Darwish A G,Ghoneim A M,Hassaan M Y,et al.Impact of RGO on electrical and dielectric properties of Co3O4/RGO nanocomposite[J].Materials Research Express,2019,6(10):105039. |
37 | Phukhaotong H,Kiennork S,Wongwanwattana P,et al.Synthesis and characterization of Co3O4/SnO2 composite powders by microwave assisted sol⁃gel method[J].Materials Today:Proceedings,2018,5(6):14099⁃14104. |
38 | Li X,Zheng J K,Liu S,et al.A novel wormhole⁃like mesoporous hybrid MnCoOx catalyst for improved ethanol catalytic oxidation[J]. Journal of Colloid and Interface Science,2019,555:667⁃675. |
39 | Chen Y T,Wang S,Chen Z P,et al.Synthesis of Co3O4 nanoparticles with controllable size and their catalytic properity[J].Solid State Sciences,2018,82:78⁃83. |
40 | Yu Y,Mottaghi⁃Tabar S,Iqbal M W,et al.CO2 methanation over alumina⁃supported cobalt oxide and carbide synthesized by reverse microemulsion method[J].Catalysis Today,2021,379:250⁃261. |
41 | Akbari M,Mirzaei A A,Atashi H,et al.Effect of microemulsion parameters on product selectivity of MgO⁃supported iron⁃cobalt⁃manganese⁃potassium nanocatalyst for fischer⁃tropsch synthesis using response surface methodology[J].Journal of the Taiwan Institute of Chemical Engineers,2018,91:396⁃404. |
42 | Prakash N,Balaji R,Chen S M,et al.Investigation of templateassisted (MCM⁃41) mesoporous Co3O4 nanostructures and its superior supercapacitive retention[J].Vacuum,2021,185:109998. |
43 | Deng J,Feng S F,Zhang K J,et al.Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH[J].Chemical Engineering Journal,2017,308:505⁃515. |
44 | Liu C,Gao A,Yi F,et al.Anchoring ultrafine Co3O4 grains on reduced oxide graphene by dual⁃template nanocasting strategy for high⁃energy solid state supercapacitor[J].Electrochimica Acta,2019,326:134965. |
45 | Li M C,Tong S,Lin J T,et al.Electrospun Co3O4 nanofiber as an efficient heterogeneous catalyst for activating peroxymonosulfate in water[J].Journal of the Taiwan Institute of Chemical Engineers,2020,106:110⁃117. |
46 | Yun W C,Lin K Y,Tong W C,et al.Enhanced degradation of paracetamol in water using sulfate radical⁃based advanced oxidation processes catalyzed by 3⁃dimensional Co3O4 nanoflower[J].Chemical Engineering Journal,2019,373:1329⁃1337. |
47 | 许泽涛,曹怡婷,王俏,等.固相钴基催化剂活化过一硫酸盐在水处理中的研究进展[J].化工进展,2022,41(2):730⁃739. |
Xu Z T,Cao Y T,Wang Q,et al.Research progress of peroxymonosulfate activated by solid⁃phase cobaltbased catalyst in water treatment[J].Chemical Industry and Engineering Progress,2022,41(2):730⁃739. | |
48 | Li Z S,Tang X K,Huang G H,et al.Bismuth MOFs based hierarchical Co3O4⁃Bi2O3 composite:An efficient heterogeneous peroxymonosulfate activator for azo dyes degradation[J].Separation and Purification Technology,2020,242:116825. |
49 | Du W Y,Zhang Q Z,Shang Y N,et al.Sulfate saturated biosorbent⁃derived Co⁃S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation[J].Applied Catalysis B:Environmental,2020,262:118302. |
50 | Mi X Y,Wang P F,Xu S Z,et al.Almost 100% peroxymonosulfate conversion to singlet oxygen on single⁃atom CoN2+2 sites[J].Angewandte Chemie International Edition,2021,60:4588⁃4593. |
51 | Tuan D D,Hu C C,Kwon E,et al.Ordination polymer⁃derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid[J].Applied Surface Science,2020,532:147382. |
52 | Zeng T,Zhang X L,Wang S H,et al.Spatial confinement of a Co3O4 catalyst in hollow metal⁃organic frameworks as a nanoreactor for improved degradation of organic pollutants[J].Environmental Science and Technology,2015,49(4):2350⁃2357. |
53 | Xu H D,Zhang Y C,Li J J,et al.Heterogeneous activation of peroxymonosulfate by a biochar⁃supported Co3O4 composite for efficient degradation of chloramphenicols[J].Environmental Pollution,2020,257:113610. |
54 | Duan L X,Zhou X J,Liu S T,et al.3D⁃hierarchically structured Co3O4/graphene hydrogel for catalytic oxidation of orange II solutions by activation of peroxymonosulfate[J].Journal of the Taiwan Institute of Chemical Engineers,2017,76:101⁃108. |
55 | Ma Y Y,Wang H J,Lü X F,et al.Three⁃dimensional ordered mesoporous Co3O4/peroxymonosulfate triggered nanoconfined heterogeneous catalysis for rapid removal of ranitidine in aqueous solution[J].Chemical Engineering Journal,2022,443:136495. |
56 | Chen L W,Zuo X,Yang S J,et al.Rational design and synthesis of hollow Co3O4@Fe2O3 core⁃shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate[J].Chemical Engineering Journal,2019,359:373⁃384. |
57 | Liang H W,Sun H Q,Patel A,et al.Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions[J].Applied Catalysis B:Environmental,2012,127:330⁃335. |
58 | Pang Y Q,Zhou J P,Yang X L,et al.Rationally designed Co3O4⁃SnO2 activated peroxymonosulfate for the elimination of chloramphenicol[J].Chemical Engineering Journal,2021,418:129401. |
59 | Liu L L,Zhan R,Zhang M,et al.Insights into the performance,mechanism, and ecotoxicity of levofloxacin degradation in CoFe2O4 catalytic peroxymonosulfate process[J].Journal of Environmental Chemical Engineering,2022,10(3):107435. |
60 | Gao L L,Deng J Q,Li T,et al.A facial strategy to efficiently improve catalytic performance of CoFe2O4 to peroxymonosulfate[J].Journal of Environmental Sciences,2022,116:1⁃13. |
61 | Qin Q D,Yan L,Liu Z M,et al.Efficient activation of peroxymonosulfate by nanotubular Co3O4 for degradation of acid orange 7:Performance and mechanism[J].Environmental Science and Pollution Research,2022,116:1⁃13. |
62 | Niu P,Li C H,Jia C X,et al.Facile synthesis of CoFe2O4 magnetic nanomaterial by natural cellulose template and catalytic performance in heterogeneous activation of peroxymonosulfate[J].Journal of Sol⁃Gel Science and Technology,2019,93(2):419⁃427. |
63 | Di J,Jamakanga R,Chen Q,et al.Degradation of Rhodamine B by activation of peroxymonosulfate using Co3O4⁃rice husk ash composites[J].Science of the Total Environment,2021,784:147258. |
64 | Li P,Lin Y N,Zhao S,et al.Defect⁃engineered Co3O4 with porous multishelled hollow architecture enables boosted advanced oxidation processes[J].Applied Catalysis B:Environmental,2021,298:120596. |
65 | Jiang Z R,Li Y X,Zhou Y X,et al.Co3O4⁃MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics[J].Separation and Purification Technology,2022,281:119935. |
66 | Klu P K,Khan M A N,Wang C H,et al.Mechanism of peroxymonosulfate activation and the utilization efficiency using hollow (Co, Mn)3O4 nanoreactor as an efficient catalyst for degradation of organic pollutants[J].Environmental Research,2022,207:112148. |
67 | Zhou Y B,Zhang Y L,Hu X M.Enhanced activation of peroxymonosulfate using oxygen vacancy⁃enriched FeCo2O4- x spinel for 2,4⁃dichlorophenol removal:Singlet oxygen⁃dominated nonradical process[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,597:124568. |
68 | Sun T,Gu B N,Wang X L,et al.The simplest and ultrafast microwave⁃mediated solid⁃state construction of cobalt oxide/carbon hybrid as an efficient peroxymonosulfate activator for ciprofloxacin degradation[J].Separation and Purification Technology,2022,296:121346. |
69 | Chen Z P,Bi S J,Zhao G Y,et al.Enhanced degradation of triclosan by cobalt manganese spinel⁃type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen:Mechanisms and intermediates identification[J].Science of the Total Environment,2020,711:134715. |
70 | Cai P C,Zhao J,Zhang X H,et al.Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation[J].Applied Catalysis B:Environmental,2022,306:121091. |
71 | Hussain A,Liu Y B,Bin⁃Aftab T,et al.Engineering reusable sponge of cobalt heterostructures for highly efficient organic pollutants degradation via peroxymonosulfate activation[J].Chem. Nano. Mat.,2019,5(4):547⁃557. |
72 | Liang Y,Li L H,Yang C M,et al.Bimetallic zeolitic imidazolate framework⁃derived nitrogen⁃doped porous carbon⁃coated CoFe2O4 core⁃shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation[J].Journal of Alloys and Compounds,2022,907:164504. |
73 | Zhu C Q,Zhang Y K,Fan Z W,et al.Carbonate⁃enhanced catalytic activity and stability of Co3O4 nanowires for 1O2⁃driven bisphenol a degradation via peroxymonosulfate activation:Critical roles of electron and proton acceptors[J].Journal of Hazardous Materials,2020,393:122395. |
[1] | Jie LIAN, Baokuan CHEN, Hongrui TIAN, Yafei GUO, Yanfeng BI. Preparation,Structure and Characterization of Easily Peelable Nickel-Based Two-Dimensional Metal-Organic Frameworks [J]. Journal of Petrochemical Universities, 2024, 37(3): 66-72. |
[2] | Shengdi LI, Haicheng XIAO, Zhijie WU. Research Progress of Cobalt⁃Based Catalysts for Fischer⁃Tropsch Synthesis [J]. Journal of Petrochemical Universities, 2024, 37(1): 34-42. |
[3] | Lixing Zhang, Xiong Zhang, Chen Li, Zhiyong Wu, Taoming Zeng, Xiangdong Ma. Research Progress of Application of Coal⁃Based Carbon Anode Materials in Lithium⁃Ion Batteries [J]. Journal of Petrochemical Universities, 2022, 35(6): 10-18. |
[4] | Chang Lu, Caishun Zhang, Daosheng Liu, Lei Zhang, Zhixian Gao. Design,Preparation and Performance of CuO⁃SiO2⁃CeO2 Catalyst [J]. Journal of Petrochemical Universities, 2022, 35(1): 29-34. |
[5] | Yongjuan Qi, Xiaojie Gong, Dan Zhang, Xian Wu, Lihua Li. Preparation and Photocatalytic Performance of MIL⁃53 (Fe) by Single⁃Mode Focused Microwave [J]. Journal of Petrochemical Universities, 2021, 34(5): 24-29. |
[6] | Zhu Min, Tang Yingchun, Wang Yanfang, Chen Shujun, Fu Yue. Microstructure and Decarbonization Properties of Modified Ni⁃MOF⁃74 [J]. Journal of Petrochemical Universities, 2020, 33(1): 17-22. |
[7] | Chen Wenwen, Peng Yiqi, Liu Dongmei, Wang Haiyan. Effect of pH Value on ZSM⁃5 Molecular Sieve with Multilevel Structure of Nanocrystalline Stacking and Its Thiophene Alkylation Property [J]. Journal of Petrochemical Universities, 2019, 32(3): 28-32. |
[8] | WangHongtao,HanJingyu,ZhangLi,LiPing,JinYingjie. Synthesis and Mesoporous Modification of MFI/MOR and BEA/MOR Intergrowth Zeolites [J]. , 2017, 30(1): 8-13. |
[9] | Tian Sha,Li Huipeng,Zhao Hua,et al. Synthesis and Characterization of Y/MCM41 Composite Molecular Sieve [J]. Journal of Petrochemical Universities, 2015, 28(6): 20-24. |
[10] | Jiang Xingjian,Li Junlong,Li Xuebing,et l. Simulation of Methanol Synthesis Process [J]. Journal of Petrochemical Universities, 2015, 28(5): 1-7. |
[11] | Wang Dongmei, An Lei, Zhang Jianzhong,et al. The Synthesis and Application of a Amide Cationic Asphalt Emulsifier [J]. Journal of Petrochemical Universities, 2015, 28(1): 16-19. |
[12] | Sun Hongyue, Gui Jianzhou, Ning Jianmei,et al. Synthesis and Application of Heteropolyacid Ionic Liquids in Esterification [J]. Journal of Petrochemical Universities, 2014, 27(3): 21-24. |
[13] | SUN Yueqiao,ZHANG Yuanyuan,DU Xiamei,et al. Synthesis of Pure ZSM22 Zeolites via Suppressing Intergrowths of Competing Phases [J]. Journal of Petrochemical Universities, 2013, 26(4): 21-26. |
[14] | ZHANG Yazhou, LIU Limei, et al. Synthesis of WaterSoluble NitrogenContaining Calixarene [J]. Journal of Petrochemical Universities, 2013, 26(3): 13-17. |
[15] | LU Chuanbo,FAN Haiming,ZHAO Jian,et al. Synthesis and Interfacial Activity of Alkyl Sulfobetaine Type Surfactants [J]. Journal of Petrochemical Universities, 2013, 26(1): 45-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.