Journal of Petrochemical Universities ›› 2007, Vol. 20 ›› Issue (2): 88-91.

Previous Articles     Next Articles

The Euler Number Study of Image and Its Application

LIN Xiao-zhu, JI Jun-wei, GU Ying-ying   

  1. School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617,P.R. China
  • Received:2006-12-13 Published:2007-06-20 Online:2017-06-28

图像欧拉数的研究与应用

林小竹, 籍俊伟, 谷莹莹   

  1. 北京石油化工学院信息工程学院,北京102617
  • 作者简介:林小竹(1964-),男,湖南安化市,教授,博士。

Abstract: Euler number of image is one of the most important characteristics in digital topology. The connectivity of the binary image was deeply researched in order to understand the essence of Euler number. The relationship between Euler number and the neighbor number of foreground run was proposed as a formula based on the two basic concepts of Euler number and neighbor number. It is a new idea to part computed Euler number of two dimesion image. It has been applied to count the number of objects with irregular shape.

Key words:  

摘要: 图像欧拉数是数字拓扑学的重要特征参数之一,为了更好地理解欧拉数的本质,对二值图像连通性
进行研究,在定义图段和相邻数两个基本概念的基础上,提出了图像欧拉数与图段相邻数的关系公式。为局部计算
二维图像的欧拉数提供了新的思路,并应用于不规则体的计数。

关键词: 数字拓扑学 ,   , 欧拉数 ,   , 二值图像 ,  ,  4-连通  ,   ,  8-连通

Cite this article

LIN Xiao-zhu, JI Jun-wei, GU Ying-ying. The Euler Number Study of Image and Its Application[J]. Journal of Petrochemical Universities, 2007, 20(2): 88-91.

林小竹, 籍俊伟, 谷莹莹. 图像欧拉数的研究与应用[J]. 石油化工高等学校学报, 2007, 20(2): 88-91.

share this article