Journal of Petrochemical Universities

Journal of Petrochemical Universities ›› 2013, Vol. 26 ›› Issue (3): 74-78.DOI: 10.3969/j.issn.1006396X.2013.03.017

Previous Articles     Next Articles

DualCore Function Least Squares Support Vector Machine Soft Sensing Model of Gasoline Dry Point

  

  1. (School of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001,China)
  • Received:2012-12-10 Published:2013-06-25 Online:2013-06-25

双核函数最小二乘支持向量机汽油干点软测量建模

赵连彬,苏成利   

  1. (辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001)
  • 作者简介:赵连彬(1986-),男,吉林榆树市,在读硕士。
  • 基金资助:
    国家863计划项目资助(2007AA04Z162);国家自
    然科学基金(61203021)资助;辽宁省科技攻关项
    目(2011216011);辽宁省高校创新团队支持计划
    项目(2009T062、LT2010058)资助。

Abstract: According to the function of mononuclear least squares support vector machine is easy to fall into local optimal value, the dualcore kernel function least squares support vector machine model method was proposed. This method uses Sigmoid kernel function and RBF kernel function which was linear weighted composing dualcore function, Removing the part of the smaller support vector sample method for improving the least squares support vector machine sparse characteristic, improving model operation speed, cross validation method was used to optimize the part of parameters. Finally the method was used to establish the gasoline dry point soft measurement model, compared with the standard support vector machine and the function of mononuclear least squares support vector machine. The results show that dualcore function least squares support vector machine model has higher calculation accuracy and better generalization ability.

Key words: Soft sensing,    ,  The least squares support vector machine,    ,  Dualcore function,   ,  Dry point 

摘要: 针对单核函数最小二乘支持向量机容易陷入局部最优值,提出双核函数最小二乘支持向量机软测量建模算法。该方法利用Sigmoid核函数与RBF核函数线性加权构成双核函数,去除部分较小支持向量样本的方法,改善最小二乘支持向量机的稀疏特性,提高模型运算速度,用k灢交叉验证法进行部分参数的优化,最后将此方法用于建立汽油干点软测量模型,并与标准支持向量机、单核最小二乘支持向量机比较,结果表明双核函数最小二乘支持向量机软测量模型具有更高的计算精度和更好的推广能力。

关键词: 软测量 , 最小二乘支持向量机 , 双核函数 , 干点

Cite this article

ZHAO Lianbin, SU Chengli. DualCore Function Least Squares Support Vector Machine Soft Sensing Model of Gasoline Dry Point[J]. Journal of Petrochemical Universities, 2013, 26(3): 74-78.

赵连彬,苏成利. 双核函数最小二乘支持向量机汽油干点软测量建模[J]. 石油化工高等学校学报, 2013, 26(3): 74-78.