Journal of Petrochemical Universities

Journal of Petrochemical Universities ›› 2018, Vol. 31 ›› Issue (03): 81-88.DOI: 10.3969/j.issn.1006-396X.2018.03.014

Previous Articles     Next Articles

A Method of Pipeline Leakage Signal Processing Based on Fusion Algorithm

Li Chuanxian1,Shi Yanan1,Ji Zhongyuan1,Zhang Xueli2,Zhu Haoran1,Lu Wenwen1   

  1. (1. College of Pipeline and Civil Engineering,China University of Petroleum,Qingdao Shandong 266580,China;2. Dongxin Oil Production Plant,Shengli Oilfield Company,Dongying Shandong 257061,China)
  • Received:2017-09-11 Revised:2017-11-20 Published:2018-06-25 Online:2018-07-11

一种基于融合算法的管道泄漏信号处理方法

李传宪1,石亚男1,姬中元1,张雪立2,朱浩然1,逯雯雯1   

  1. (1.中国石油大学 储运与建筑工程学院, 山东 青岛 266580; 2.中国石油化工股份有限公司 胜利油田分公司东辛采油厂, 山东 东营 257061)
  • 通讯作者: 石亚男(1992-),女,硕士研究生,从事石油与天然气工程方面研究;E-mail:1239842520@qq.com
  • 作者简介:李传宪(1963-),男,博士,教授,博士生导师,从事油气长距离管道输送技术研究; E-mail:lchxianz@upc.edu.cn。
  • 基金资助:
    山东省教育规划课题资助(16BSH042)

Abstract: The actual denoising effect of wavelet denoising methed was studied through pipe flow test apparatus, which simulated the actual pipeline leakage condition. The reason why small leak was not easy to be found was explained from two expects through timefrequency analysis of the leakage signal attenuation process. And the disadvantages of the most commonly used wavelet de-noising method to deal with small leakage signal were also discussed. On this basis, a new threshold function was established to improve the signal reconstruction accuracy and the advantage was analyzed mathematically. Next, a blind source separation algorithm based on maximum signal-to-noise ratio (SNR) was proposed, which integrated wavelet transform with blind source separation. By separating the known structural signal, the applicability of this method was illustrated, and the practical denoising effect and industrial application value of the fusion algorithm were verified.

Key words: Time-frequency analysis, Wavelet denoising, New threshold function, Blind source separation, Fusion algorithm

摘要: 利用环道实验模拟实际管道泄漏工况,验证了小波去噪的实际效果,通过时频联合分析泄漏信号的衰减过程,从两方面阐述了小泄漏不易被发现的原因,并且讨论了现阶段最常用的小波去噪方法处理小泄漏信号的不足。针对上述问题,建立新阈值函数提高小波去噪方法的信号重构精度,并从数学角度分析了新函数的优越性,提出了基于最大信噪比的盲源分离算法,将小波变换与盲源分离相融合,通过分离已知构造信号说明此方法的适用性,验证该融合算法的实际去噪效果和工业应用价值。

关键词: 时频联合, 小波去噪, 新阈值函数, 盲源分离, 融合算法

Cite this article

Li Chuanxian,Shi Yanan,Ji Zhongyuan,Zhang Xueli,Zhu Haoran,Lu Wenwen. A Method of Pipeline Leakage Signal Processing Based on Fusion Algorithm[J]. Journal of Petrochemical Universities, 2018, 31(03): 81-88.

李传宪,石亚男,姬中元,张雪立,朱浩然,逯雯雯. 一种基于融合算法的管道泄漏信号处理方法[J]. 石油化工高等学校学报, 2018, 31(03): 81-88.