Journal of Petrochemical Universities

Journal of Petrochemical Universities ›› 2016, Vol. 29 ›› Issue (1): 76-79.DOI: 10.3969/j.issn.1006-396X.2016.01.015

Previous Articles     Next Articles

 
Fault Diagnosis of Electric Submersible Pump Based on BP Neural Network

 

  

  1.  
    (College of Petroleum Engineering, Yangtze University, Wuhan Hubei 430100, China)
  • Received:2015-10-29 Revised:2015-12-11 Published:2016-02-25 Online:2016-02-29

基于B P神经网络的潜油电泵故障诊断

彭科翔   

  1. ( 长江大学 石油工程学院, 湖北 武汉4 3 0 1 0 0)
  • 作者简介:彭科翔( 1 9 9 0 - ) , 男, 硕士研究生, 从事油气田开发工程、 油气开采理论与应用技术研究; E - m a i l : 5 4 1 0 8 1 1 1 1@q q.c o m。

Abstract:  

Current card is the main basis of electric submersible pump well fault diagnosis. At present, the diagnosis of electric pumping wells is mainly completed by technical workers. It is difficult to achieve rapid mass diagnosis, and the diagnosis results are greatly influenced by engineer technology level. Therefore the application of BP neural network for fault diagnosis of electric submersible pump is put forward. First of all, different pump current cards are collected, and sample library is established. The eigenvalues of the different pump current card are gathered and trained according to certain principles. After completion of training a weight matrix is got, and the current card characteristic values and weights matrix of similarity is calculated. Through computer programming application, the method can be proved to make electric pump diagnosis accurately and rapidly.

Key words:  

摘要: 电流卡片是电潜泵井故障诊断的主要依据, 目前主要由技术人员人工完成对电泵井的诊断, 难以实
现快速大批量诊断; 且诊断结果受工程师技术水平影响较大。因此提出了应用B P神经网络进行电潜泵故障的诊
断, 首先大量收集不同泵况的电流卡片, 建立样本库; 然后提取样本库中不同泵况电流卡片的特征值, 按照一定的训
练原则进行训练。训练完成后得到所需的权值矩阵, 将要诊断的电流卡片特征值与权值矩阵进行计算得出相似度。
通过计算机编程应用, 证明该方法可以准确、 快速地进行电泵诊断。

关键词: 潜油电泵,  , 电流卡片, B P神经网络, 特征值, 工况诊断

Cite this article

Peng Kexiang.  

Fault Diagnosis of Electric Submersible Pump Based on BP Neural Network
[J]. Journal of Petrochemical Universities, 2016, 29(1): 76-79.

彭科翔. 基于B P神经网络的潜油电泵故障诊断[J]. 石油化工高等学校学报, 2016, 29(1): 76-79.