| [1] |
雒丽娜, 陈常东, 王芳芳. MXene@TiO2/Co-MoS2- xOy复合材料的制备及其光催化性能研究[J]. 石油化工高等学校学报, 2025, 38(1): 74-80.
|
|
LUO L N, CHEN C D, WANG F F. Preparation and photocatalytic properties of MXene@TiO2/Co-MoS2- xOy composites[J]. Journal of Petrochemical Universities, 2025, 38(1): 74-80.
|
| [2] |
CARDOSO JUAREZ A O, IVAN OCAMPO LOPEZ E, KESARLA M K, et al. Advances in 4-nitrophenol detection and reduction methods and mechanisms: An updated review[J]. ACS Omega, 2024, 9(31): 33335-33350.
|
| [3] |
MEHRINEJAD CHOOBARI S F, NEMATOLLAHZADEH A, BABOLAN N M. Inverse fluidized bed reactor enhanced with silver nanoparticle catalysts-embedded starch-based hydrogel for the sustainable conversion of 4-nitrophenol to 4-aminophenol[J]. Chemical Engineering Journal, 2025, 510: 161612.
|
| [4] |
YANG P, XU A D, XIA J, et al. Facile synthesis of highly catalytic activity Ni-Co-Pd-P composite for reduction of the p-nitrophenol[J]. Applied Catalysis A: General, 2014, 470: 89-96.
|
| [5] |
LIU Z N, LI B, ZHANG H C. Controllable assemblies of Au NPs/P5A for enhanced catalytic reduction of 4-nitrophenol[J]. Polymers, 2024, 16(15): 2104.
|
| [6] |
TEIMOURI M, KHOSRAVI-NEJAD F, ATTAR F, et al. Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity——A review[J]. Journal of Cleaner Production, 2018, 184: 740-753.
|
| [7] |
张骁鑫, 许雯, 孙辉, 等. 双金属催化剂在对硝基苯酚加氢还原中的研究进展[J]. 南京工业大学学报(自然科学版), 2024, 46(5): 479-489.
|
|
ZHANG X X, XU W, SUN H, et al. Research progress on bimetallic catalysts in 4-nitrophenol hydrogenation reduction[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2024, 46(5): 479-489.
|
| [8] |
常梦涵, 路昊明, 温沁雪. 改性聚氨酯载体用于军工废水处理[J]. 化工环保, 2025, 45(6): 807-813.
|
|
CHANG M H, LU H M, WEN Q X. Research on treatment of military wastewater using modified polyurethane carriers[J]. Environmental Protection of Chemical Industry, 2025, 45(6): 807-813.
|
| [9] |
赵玲玉, 赵可鑫, 张秀玲, 等. 氢等离子体制备Pd/GO-P催化材料及其催化还原对硝基苯酚性能[J]. 石油学报(石油加工), 2023, 39(5): 1059-1069.
|
|
ZHAO L Y, ZHAO K X, ZHANG X L, et al. Hydrogen plasma synthesis of Pd/GO-P and its performance for catalytic reduction of p-nitrophenol[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1059-1069.
|
| [10] |
REN Z J, LI H H, LI J, et al. Green synthesis of reduced graphene oxide/chitosan/gold nanoparticles composites and their catalytic activity for reduction of 4-nitrophenol[J]. International Journal of Biological Macromolecules, 2023, 229: 732-745.
|
| [11] |
DARUICH DE SOUZA C, RIBEIRO NOGUEIRA B, ROSTELATO M E C M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction[J]. Journal of Alloys and Compounds, 2019, 798: 714-740.
|
| [12] |
NAVEEN M H, KHAN R, BANG J H. Gold nanoclusters as electrocatalysts: Atomic level understanding from fundamentals to applications[J]. Chemistry of Materials, 2021, 33(19): 7595-7612.
|
| [13] |
KE W, QIN X D, VAZQUEZ Y, et al. Direct characterization of interface sites in Au/TiO2 catalysts prepared using atomic layer deposition[J]. Chem Catalysis, 2024, 4(5): 100977.
|
| [14] |
SRAVAN KUMAR K B, WHITTAKER T N, PETERSON C, et al. Water poisons H2 activation at the Au-TiO2 interface by slowing proton and electron transfer between Au and titania[J]. Journal of the American Chemical Society, 2020, 142(12): 5760-5772.
|
| [15] |
李欢欢, 李瑾, 王鹏飞, 等. 还原氧化石墨烯负载纳米金催化还原4-硝基苯酚的性能研究[J]. 中国海洋大学学报(自然科学版), 2025, 55(6): 102-111.
|
|
LI H H, LI J, WANG P F, et al. Immobilization of nanogold on reduced graphene oxide and the catalytic reduction of 4-nitrophenol[J]. Periodical of Ocean University of China, 2025, 55(6): 102-111.
|
| [16] |
CHEN W R, LI B R, GAO G B, et al. Chiral supramolecular nanomaterials: From chirality transfer and amplification to regulation and applications[J]. Interdisciplinary Materials, 2023, 2(5): 689-713.
|
| [17] |
施治国, 冯钰锜. 新型快速分离介质灌流硅胶微球的合成及应用[J]. 分析化学, 2009, 37(5): 695-697.
|
|
SHI Z G, FENG Y Q. Synthesis of perforative silica microspheres and its application in fast separation[J]. Chinese Journal of Analytical Chemistry, 2009, 37(5): 695-697.
|
| [18] |
代巧玲, 孙佳新, 贾燕子, 等. 二氧化硅包覆核壳结构催化剂的制备与应用研究进展[J]. 石油炼制与化工, 2024, 55(3): 148-153.
|
|
DAI Q L, SUN J X, JIA Y Z, et al. Research progress on preparation and application of SiO2 coated core-shell catalysts[J]. Petroleum Processing and Petrochemicals, 2024, 55(3): 148-153.
|
| [19] |
朱燕超, 冀银豪, 赵春梅. 功能性二氧化硅微球的制备[J]. 当代化工, 2024, 53(8): 1799-1803.
|
|
ZHU Y C, JI Y H, ZHAO C M. Preparation of functional silica microspheres[J]. Contemporary Chemical Industry, 2024, 53(8): 1799-1803.
|
| [20] |
HAISS W, THANH N T K, AVEYARD J, et al. Determination of size and concentration of gold nanoparticles from UV-vis spectra[J]. Analytical Chemistry, 2007, 79(11): 4215-4221.
|
| [21] |
董前民, 杨艳敏, 梁培, 等. 表面增强拉曼散射(SERS)衬底的研究及应用[J]. 光谱学与光谱分析, 2013, 33(6): 1547-1552.
|
|
DONG Q M, YANG Y M, LIANG P, et al. Research on the substrates of surface enhanced raman scattering (SERS) and their applications to biomedicine and environmental analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1547-1552.
|
| [22] |
BURUNKOVA J, KOKENYESI S, CSARNOVICS I, et al. Influence of gold nanoparticles on the photo-polymerization processes and structure in acrylate nanocomposites[J]. European Polymer Journal, 2015, 64: 189-195.
|
| [23] |
SHIN K S, CHOI J Y, PARK C S, et al. Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles[J]. Catalysis Letters, 2009, 133(1): 1-7.
|
| [24] |
杨棽垚, 杨二龙, 戚志林, 等. 基于反应分子动力学的超临界多元热流体发生规律及物性变化特征[J]. 东北石油大学学报, 2024, 48(6): 98-108.
|
|
YANG C Y, YANG E L, QI Z L, et al. Generation and variation characteristics of supercritical multicomponent thermal fluids based on reaction molecular dynamics simulation[J]. Journal of Northeast Petroleum University, 2024, 48(6): 98-108.
|