Journal of Petrochemical Universities ›› 2025, Vol. 38 ›› Issue (2): 1-9.DOI: 10.12422/j.issn.1006-396X.2025.02.001
• Highlights of This Issue • Next Articles
Ruiqi QIAO1(), Jianhong GONG1, Xiaoli WEI1, Dongxue CAO2(
)
Received:
2025-02-27
Revised:
2025-03-28
Published:
2025-04-25
Online:
2025-04-25
Contact:
Dongxue CAO
通讯作者:
曹东学
作者简介:
乔瑞琪(1994⁃),女,硕士,助理研究员,从事石油炼制技术方面的研究;E⁃mail:qiaoruiqi.ripp@sinopec.com。
基金资助:
CLC Number:
Ruiqi QIAO, Jianhong GONG, Xiaoli WEI, Dongxue CAO. Research Progress and Commercial Applications of Fluid Catalytic Cracking (FCC) Technology[J]. Journal of Petrochemical Universities, 2025, 38(2): 1-9.
乔瑞琪, 龚剑洪, 魏晓丽, 曹东学. 流化催化裂化技术研究现状与工业应用[J]. 石油化工高等学校学报, 2025, 38(2): 1-9.
1 | 徐春明,杨朝合.石油炼制工程[M].4版.北京:石油工业出版社,2009. |
2 | 杨朝合,陈小博,李春义,等.催化裂化技术面临的挑战与机遇[J].中国石油大学学报(自然科学版),2017,41(6):171⁃177. |
YANG Z H,CHEN X B,LI C Y,et al.Challenges and opportunities of fluid catalytic cracking technology[J].Journal of China University of Petroleum(Edition of Natural Science),2017,41(6):171⁃177. | |
3 | 陈俊武,卢捍卫.催化裂化在炼油厂中的地位和作用展望——催化裂化仍将发挥主要作用[J].石油学报(石油加工),2003,19(1):1⁃11. |
CHEN J W,LU H W.Prospects of status and role of FCC in refinery—FCC will continue to play a leading role in petroleum refining industry[J].Acta Petrolei Sinica(Petroleum Processing Section),2003,19(1):1⁃11. | |
4 | 陈俊武,许友好.催化裂化工艺与工程[M].3版.北京:中国石化出版社,2015. |
5 | 朱根权,汪燮卿.重质油制轻烯烃的催化裂化家族工艺开发回顾及展望[J].石油炼制与化工,2021,52(10):10⁃17. |
ZHU G Q,WANG X Q.Review and forecast on development of light olefins production with heavy feedstocks via FCC family processes[J].Petroleum Processing and Petrochemicals,2021,52(10):10⁃17. | |
6 | 郭春垒,范景新,臧甲忠,等.柴油高值化综合利用技术发展现状及分析[J].化工进展,2018,37(11):4205⁃4213. |
GUO C L,FAN J X,ZANG J Z,et al.Development of high⁃value utilization technologies of diesel[J].Chemical Industry and Engineering Progress,2018,37(11):4205⁃4213. | |
7 | 许友好,王维,鲁波娜,等.中国炼油创新技术MIP的开发策略及启示[J].化工进展,2023,42(9):4465⁃4470. |
XU Y H,WANG W,LU B N,et al.China's oil refining innovation:MIP development strategy and enlightenment[J].Chemical Industry and Engineering Progress,2023,42(9):4465⁃4470. | |
8 | 许友好.我国催化裂化工艺技术进展[J].中国科学(化学),2014,44(1):13⁃24. |
XU Y H.Advance in China fluid catalytic cracking(FCC) process[J].Scientia Sinica(Chimica),2014,44(1):13⁃24. | |
9 | 龚剑洪,胡跃梁,蒋文斌,等.MIP工艺技术专用催化剂CR022的工业应用[J].石油炼制与化工,2004,35(5):8⁃11. |
GONG J H,HU Y L,JIANG W B,et al.Commercial application of catalyst CR022 for MIP process[J].Petroleum Processing and Petrochemicals,2004,35(5):8⁃11. | |
10 | 乔立功.MIP工艺工程技术的进展[J].炼油技术与工程,2015,45(6):7⁃11. |
QIAO L G.Development of MIP process engineering[J].Petroleum Refinery Engineering,2015,45(6):7⁃11. | |
11 | 杨健,谢晓东,蔡智.增产丙烯、多产异构化烷烃的清洁汽油生产技术(MIP⁃CGP)在催化裂化装置上的应用[J].中外能源,2006,11(3):54⁃60. |
YANG J,XIE X D,CAI Z.Application of the MIP⁃CGP technology in FCC units[J].Sino⁃Global Energy,2006,11(3):54⁃60. | |
12 | 孟凡东,黄延召,王龙延,等.低温接触/大剂油比的催化裂化技术[J].石油炼制与化工,2011,42(6):34⁃39. |
MENG F D,HUANG Y Z,WANG L Y,et al.FCC process development based on low temperature contact and high catalyst/oil ratio operation[J].Petroleum Processing and Petrochemicals,2011,42(6):34⁃39. | |
13 | 常剑,孟凡东,王龙延,等.催化裂化低温接触大剂/油比技术理念与实践[J].石油学报(石油加工),2011,27(3):367⁃375. |
CHANG J,MENG F D,WANG L Y,et al.Theory and practice of low temperature contact and high ratio of catalyst to oil in FCC process[J].Acta Petrolei Sinica (Petroleum Processing Section),2011,27(3):367⁃375. | |
14 | 赵赞立,孟凡东,段少魏,等.FDFCC⁃Ⅲ工艺的先进性及工业应用[J].炼油与化工,2020,31(6):29⁃32. |
ZHAO Z L,MENG F D,DUAN S W,et al.The advancement and industrial application of FDFCC⁃Ⅲ technology[J].Refining and Chemical Industry,2020,31(6):29⁃32. | |
15 | 韦勇,赵飞,张喜文,等.两段提升管催化裂化技术在长庆石化的应用[J].石化技术,2007,14(1):27⁃30. |
WEI Y,ZHAO F,ZHANG X W,et al.Application of two⁃stage riser catalytic cracking technology in Changqing petrochemical company[J].Petrochemical Industry Technology,2007,14(1):27⁃30. | |
16 | 杨朝合,山红红,张建芳.两段提升管催化裂化系列技术[J].炼油技术与工程,2005,35(3):28⁃33. |
YANG Z H,SHAN H H,ZHANG J F.Two⁃stage riser FCC technologies[J].Petroleum Refinery Engineering,2005,35(3):28⁃33. | |
17 | 禄军让,聂普选,王益民,等.浅析两段提升管催化裂化技术及应用效果[J].中国设备工程,2012(9):47⁃50. |
LU J R,NIE P X,WANG Y M,et al.A brief analysis of two⁃stage riser catalytic cracking technology and its application effects[J].China Plant Engineering,2012(9):47⁃50. | |
18 | 汪燮卿,陈祖庇,蒋福康.重质油生产轻烯烃的FCC家族工艺比较[J].炼油设计,1995,25(6):15⁃18. |
WANG X Q,CHEN Z B,JIANG F K.Comparison of FCC famfly process for light olefins production from heavy oils[J].Petroleum Design,1995,25(6):15⁃18. | |
19 | 刘怀元.MIO技术的工业应用[J].石油炼制与化工,1998,29(8):12⁃15. |
LIU H Y.Commercial application of MIO technology[J].Petroleum Processing and Petrochemicals,1998,29(8):12⁃15. | |
20 | 霍永清,王亚民,汪燮卿,等.多产液化气和高辛烷值汽油MGG工艺技术[J].石油炼制与化工,1993,24(5):41⁃52. |
HUO Y Q,WANG Y M,WANG X Q,et al.A novel catalytic conversion process for maximum LPG plus gasoline production(MGG)[J].Petroleum Processing and Petrochemicals,1993,24(5):41⁃52. | |
21 | 张永连,邢颖春,钟乐燊,等.MGG工艺的工业试验[J].炼油设计,1993,23(3):4⁃9. |
ZHANG Y L,XING Y C,ZHONG L S,et al.Commercial test of MGG process[J].Petroleum Design,1993,23(3):4⁃9. | |
22 | 钟乐燊,霍永清,王均华,等.常压渣油多产液化气和汽油(ARGG)工艺技术[J].石油炼制与化工,1995,26(6):15⁃19. |
ZHONG L S,HUO Y Q,WANG J H,et al.ARGG process for maximum gas plus gasoline production from atmospheric residue[J].Petroleum Processing and Petrochemicals,1995,26(6):15⁃19. | |
23 | 潘罗其,颜刚,邱中红,等.ARGG装置增产丙烯技术的工业应用[J].石油炼制与化工,2006,37(1):27⁃30. |
PAN L Q,YAN G,QIU Z H,et al.Measures for increasing propylene yield in ARGG unit[J].Petroleum Processing and Petrochemicals,2006,37(1):27⁃30. | |
24 | 于福东,宋亦伟,白旭辉,等.催化裂化装置应用MFP技术的工业试验[J].石油炼制与化工,2022,53(7):18⁃22. |
YU F D,SONG Y W,BAI X H,et al.Industrial test of MFP technology in FCC unit[J].Petroleum Processing and Petrochemicals,2022,53(7):18⁃22. | |
25 | 宋亦伟,赵勇.MFP技术在重油催化裂化装置中的工业应用研究[J].现代化工,2022,42(9):227⁃230. |
SONG Y W,ZHAO Y.Industrial application of MFP technology in heavy oil catalytic cracking unit[J].Modern Chemical Industry,2022,42(9):227⁃230. | |
26 | 陈祖庇,张久顺,钟乐燊,等.MGD工艺技术的特点[J].石油炼制与化工,2002,33(3):21⁃25. |
CHEN Z B,ZHANG J S,ZHONG L S,et al.The main features of MGD technology[J].Petroleum Processing and Petrochemicals,2002,33(3):21⁃25. | |
27 | 胡勇仁,彭永强,张执刚,等.催化裂化多产液化气和柴油技术在广石化的工业应用[J].石油炼制与化工,2001,32(12):16⁃20. |
HU Y R,PENG Y Q,ZHANG Z G,et al.Industrial application of maximizing gas and diesel technology in FCCU[J].Petroleum Processing and Petrochemicals,2001,32(12):16⁃20. | |
28 | 汪燮卿,舒兴田.重质油裂解制轻烯烃[M].北京:中国石化出版社,2015. |
29 | 许日.基于催化裂化家族技术发展新型炼化一体化[J].化学研究与应用,2024,36(9):1961⁃1967. |
XU R.Integration of new type of oil refining and chemical production based on fluid catalytic cracking family series technology[J].Chemical Research and Application,2024,36(9):1961⁃1967. | |
30 | 谢朝钢,施文元,蒋福康,等.Ⅱ型催化裂解制取异丁烯和异戊烯的研究及其工业应用[J].石油炼制与化工,1995,26(5):1⁃6. |
XIE Z G,SHI W Y,JIANG F K,et al.Research and development of deep catalytic cracking (type Ⅱ) for isobutylene and isoamylene production[J].Petroleum Processing and Petrochemicals,1995,26(5):1⁃6. | |
31 | 王巍,谢朝钢.催化裂解(DCC)新技术的开发与应用[J].石油化工技术经济,2005,21(1):8⁃13. |
WANG W,XIE Z G.Development and application of DCC new technology[J].Techno⁃Economics in Petrochemicals,2005,21(1):8⁃13. | |
32 | 邢立强.增产丙烯技术DCC工艺应用[J].齐齐哈尔大学学报(自然科学版),2010,26(4):72⁃75. |
XING L Q.Study on deep catalytic cracking (DCC) process[J].Journal of Qiqihar University(Natural Science Edition),2010,26(4):72⁃75. | |
33 | 吴青.富产化学品的绿色高效石油碱催化新技术[J].石油炼制与化工,2024,55(1):189⁃201. |
WU Q.Base catalytic technology for low carbon and efficient petroleum processing with enhanced chemical production[J].Petroleum Processing and Petrochemicals,2024,55(1):189⁃201. | |
34 | 贺安新,侯利国,靳凤英,等.原油(重油)直接制化学品(DPC)技术在惠州石化的工业应用[J].炼油技术与工程,2023,53(4):34⁃38. |
HE A X,HOU L G,JIN F Y,et al.Industrial application of direct petroleum to chemicals(DPC)technology in Huizhou petrochemical company[J].Petroleum Refinery Engineering,2023,53(4):34⁃38. | |
35 | 谢朝钢,潘仁南.重油催化热裂解制取乙烯和丙烯的研究[J].石油炼制与化工,1994,25,25(6):30⁃34. |
XIE Z G,PAN R N.Studies on producing ethylene and propylene from heavy hydrocarbons by catalytic pyrolysis process[J].Petroleum Processing and Petrochemicals,1994,25(6):30⁃34. | |
36 | 谢朝钢,汪燮卿,郭志雄,等.催化热裂解(CPP)制取烯烃技术的开发及其工业试验[J].石油炼制与化工,2001,32(12):7⁃10. |
XIE Z G,WANG X Q,GUO Z X,et al.CPP technology for olefin production and its commercial trial[J].Petroleum Processing and Petrochemicals,2001,32(12):7⁃10. | |
37 | 王大壮,王鹤洲,谢朝钢,等.重油催化热裂解(CPP)制烯烃成套技术的工业应用[J].石油炼制与化工,2013,44(1):56⁃59. |
WANG D Z,WANG H Z,XIE Z G,et al.Commercial trial of CPP complete technology for producing light olefins from heavy feedstock[J].Petroleum Processing and Petrochemicals,2013,44(1):56⁃59. | |
38 | 王巍,谢朝钢.催化裂解(DCC)新技术的开发与应用[J].石油化工技术经济,2005,21(1):8⁃13. |
WANG W,XIE Z G.Development and application of DCC new technology[J].Techno⁃Economics in Petrochemicals,2005,21(1):8⁃13. | |
39 | 李晓红.两段提升管催化裂化多产丙烯(TMP)技术应用基础研究[D].青岛:中国石油大学(华东),2007. |
40 | 李春义,徐占武,姜国骅,等.两段提升管催化裂解多产丙烯技术的工业试验[J].石化技术与应用,2008,26(5):436⁃441. |
LI C Y,XU Z W,JIANG G H,et al.Commercial test of two⁃stage riser catalytic cracking of heavy oil for maximizing propylene yield[J].Petrochemical Technology & Application,2008,26(5):436⁃441. | |
41 | 马文明,成晓洁,朱根权,等.DCC⁃plus技术及其产品灵活性[J].石油学报(石油加工),2019,35(2):217⁃223. |
MA W M,CHENG X J,ZHU G Q,et al.DCC⁃plus process and flexibility of its products[J].Acta Petrolei Sinica (Petroleum Processing Section),2019,35(2):217⁃223. | |
42 | 蔡建崇,万涛.增强型催化裂解技术(DCC⁃PLUS)的工业应用[J].石油炼制与化工,2019,50(11):16⁃20. |
CAI J C,WAN T.Industrial application of DCC⁃PLUS technology[J].Petroleum Processing and Petrochemicals,2019,50(11):16⁃20. | |
43 | 谢朝钢.DCC工艺技术灵活性及其在化工型炼油厂的应用[J].石油炼制与化工,2022,53(7):1⁃5. |
XIE Z G.Flexibility of DCC technology and its commercial application in chemical⁃type refinery[J].Petroleum Processing and Petrochemicals,2022,53(7):1⁃5. | |
44 | 谢朝钢,魏晓丽,龙军.重油催化裂解制取丙烯的分子反应化学[J].石油学报(石油加工),2015,31(2):307⁃314. |
XIE Z G,WEI X L,LONG J.Molecular reaction chemistry of heavy oil catalytic cracking to propylene[J].Acta Petrolei Sinica (Petroleum Processing Section),2015,31(2):307⁃314. | |
45 | 谢朝钢,高永灿,姚日远,等.MCP重油选择性裂解工艺技术的开发及其工业试验[J].石油炼制与化工,2014,45(11):65⁃69. |
XIE Z G,GAO Y C,YAO R Y,et al.Development of selective catalytic cracking technology for maximizing catalytic propylene and its commercial application[J].Petroleum Processing and Petrochemicals,2014,45(11):65⁃69. | |
46 | 张策,张执刚,龚剑洪,等.重油高效催化裂解(RTC)技术试验研究[J].石油炼制与化工,2021,52(8):12⁃16. |
ZHANG C,ZHANG Z G,GONG J H,et al.Experimental study of residuum to chemicals(RTC)technology[J].Petroleum Processing and Petrochemicals,2021,52(8):12⁃16. | |
47 | 龚剑洪,吴雷,马青青,等.新型高效重油催化裂解(RTC)技术的工业应用[J].石油炼制与化工,2021,52(7):1⁃5. |
GONG J H,WU L,MA Q Q,et al.Commercial application of novel deep catalytic cracking technology for resid to chemicals (RTC)[J].Petroleum Processing and Petrochemicals,2021,52(7):1⁃5. | |
48 | 焦瑞.世界首套RTC工艺重油催化裂解装置全面开车起步[J].炼油技术与工程,2023,53(7):24. |
JIAO R.The world's first heavy oil catalytic cracking unit using the RTC process has been fully started up[J].Petroleum Refinery Engineering,2023,53(7):24. | |
49 | 常鑫.中国成品油消费现状及趋势分析[J].炼油与化工,2022,33(3):1⁃4. |
CHANG X.Analysis on current situation and trend of China's refined oil consumption[J].Refining and Chemical Industry,2022,33(3):1⁃4. | |
50 | 曹正凯,姚斌,李鹏,等.压减柴汽比的炼油产品结构调整措施[J].广东化工,2022,49(9):48⁃49. |
CAO Z K,YAO B,LI P,et al.Measure conclusion of decreasing ratio of diesel and gasoline for refinery[J].Guangdong Chemical Industry,2022,49(9):48⁃49. | |
51 | 龚剑洪,龙军,毛安国,等.LCO加氢⁃催化组合生产高辛烷值汽油或轻质芳烃技术(LTAG)的开发[J].石油学报(石油加工),2016,32(5):867⁃874. |
GONG J H,LONG J,MAO A G,et al.Development of the LTAG technology for LCO to produce higher RON naphtha and light aromatics[J].Acta Petrolei Sinica (Petroleum Processing Section),2016,32(5):867⁃874. | |
52 | 王鹏,严加松,于善青,等.LTAG工艺专用催化剂SLG⁃1 的研发与应用[J].石油炼制与化工,2018,49(12):1⁃5. |
WANG P,YAN J S,YU S Q,et al.Development and application of SLG⁃1 catalyst for LTAG technology[J].Petroleum Processing and Petrochemicals,2018,49(12):1⁃5. | |
53 | 毛安国,龚剑洪,唐津莲,等.催化裂化轻循环油生产高辛烷值汽油或轻质芳烃(LTAG)技术关键及实践[J].石油与天然气化工,2020,49(3):1⁃7. |
MAO A G,GONG J H,TANG J L,et al.Technical key and practice of producing high octane number gasoline or light aromatics (LTAG) from FCC light cycle oil[J].Chemical Engineering of Oil and Gas,2020,49(3):1⁃7. | |
54 | 彭建宁.RTS和LTAG技术在柴油国Ⅵ质量升级中的工业应用[J].石油石化绿色低碳,2020,5(2):15⁃20. |
PENG J N.Industrial application of RTS and LTAG in state⁃Ⅵ diesel fuel upgrading[J].Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry,2020,5(2):15⁃20. | |
55 | 龚剑洪,毛安国,刘晓欣,等.催化裂化轻循环油加氢⁃催化裂化组合生产高辛烷值汽油或轻质芳烃(LTAG)技术[J].石油炼制与化工,2016,47(9):1⁃5. |
GONG J H,MAO A G,LIU X X,et al.LTAG technology for producing high octane number gasoline and light aromatics[J].Petroleum Processing and Petrochemicals,2016,47(9):1⁃5. | |
56 | 唐津莲,龚剑洪,习远兵,等.第二代LTAG技术开发[J].石油学报(石油加工),2022,38(2):227⁃233. |
TANG J L,GONG J H,XI Y B,et al.Development and industrial application of second⁃generation LTAG technology[J].Acta Petrolei Sinica (Petroleum Processing Section),2022,38(2):227⁃233. | |
57 | 唐津莲,龚剑洪,彭轶,等.第二代LTAG技术的工业应用[J].石油炼制与化工,2021,52(2):1⁃6. |
TANG J L,GONG J H,PENG Y,et al.Industrial application of second⁃generation LTAG technology[J].Petroleum Processing and Petrochemicals,2021,52(2):1⁃6. | |
58 | 袁起民,毛安国,龚剑洪,等.LCO选择性加氢⁃催化裂化组合生产轻质芳烃(LTA)技术工业实践[J].石油炼制与化工,2020,51(12):1⁃5. |
YUAN Q M,MAO A G,GONG J H,et al.Industrial practice of LTA technology for converting LCO to light aromatics[J].Petroleum Processing and Petrochemicals,2020,51(12):1⁃5. |
[1] | Zhongting Zhao, Shuang Li, Chunyun Zhu, Huiqiang Ma. Remediation of Diesel Contaminated Soil by Functional Flora and Succession Characteristics [J]. Journal of Petrochemical Universities, 2023, 36(4): 20-24. |
[2] | Gaojun An, Zhenzhen Xue, Ximeng Xu, Yangfeng Xia, Yawen Liu, Changbo Lu, Zhe Zheng. Study on the Application Performance of Polyoxymethylene Dimethyl Ethers [J]. Journal of Petrochemical Universities, 2023, 36(1): 16-24. |
[3] | Qi Bangfeng, Fan Kaihui, Zhang Guoxiang, Hu Miao. Research on Composition and Properties of Diesel Antiwear Agent [J]. Journal of Petrochemical Universities, 2021, 34(2): 17-21. |
[4] | Cui Chen, Cai Guangqing, Zhang Linzhou. Compositional Model Development for Gasoline [J]. Journal of Petrochemical Universities, 2018, 31(03): 1-06. |
[5] | GaoJianchong,ZhangLing,FengPuyong,WangChunlin. Research on Plugging and Fluid Diversion of Emulsion Diesel System for Unconsolidated Sandstone Reservoir [J]. , 2017, 30(1): 36-41. |
[6] | . [J]. , 2016, 29(5): 1-8. |
[7] | Wang Yujia, Yue Yuan, Lu Cong, Wei Min. Preperation and Hydrodearomatization Performance of NiWP Catalyst Containing Hierarchical Hβ [J]. Journal of Petrochemical Universities, 2016, 29(2): 13-17. |
[8] |
Chen Yifei Ji Dekun, Ding Fuchen,Chi Yaoling, Yi Yufeng.
Effects of Binder Component to Adsorptive Desulfurization Catalyst for FCC Gasoline on Desulfurization Performance and Mechanical Strength |
[9] | Liu Mei, Lin Zeye, Wang Nannan,Zhao Dezhi. Synthesis of a New Diesel Pour Point Depressant [J]. Journal of Petrochemical Universities, 2015, 28(6): 25-28. |
[10] | Zhu Mengmeng, Zheng Lan’ge, Qin Yucai, et al. Adsorption and Diffusion of Aromatic Hydrocarbons on FCC Catalysts [J]. Journal of Petrochemical Universities, 2015, 28(3): 7-11. |
[11] | Ren Jing,Cao Guangwei, Zhang Yong. Adsorptive Desulfurization of Gasoline with Cu(I) Based MetalOrganic Framework [J]. Journal of Petrochemical Universities, 2015, 28(3): 41-44. |
[12] | Yin Feng,Qin Yucai,Yu Wenyu,et al. Preparation and Characterization of TiO2MCM41 and Its Performance on the Desulfurization [J]. Journal of Petrochemical Universities, 2014, 27(6): 1-6. |
[13] | Jin Fuquan, Li Xiaohong, Li Donghong. Preparation and Characterization of CaO/ZnAlO Solid Base and Its Catalytic Activity [J]. Journal of Petrochemical Universities, 2014, 27(5): 43-49. |
[14] | Li Siyang,Zhao Dezhi,Wang Dingcong,et al. Preparation of Nano SelfAssembly Macroporous Catalyst and Its Hydrogenation Performance for FCC Diesel Oil [J]. Journal of Petrochemical Universities, 2014, 27(1): 11-16. |
[15] | HAO Yutong,YAN Wenchao,LI Ke. Application of NaY Supported Ionic Liquid on Desulfurization of FCC Gasoline [J]. Journal of Petrochemical Universities, 2013, 26(4): 27-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.