Journal of Liaoning Petrochemical University ›› 2026, Vol. 46 ›› Issue (1): 1-9.DOI: 10.12422/j.issn.1672-6952.2026.01.001
• Current Recommendation • Next Articles
Xiaomeng WANG(
), Zhimeng WANG, Lei SHI(
)
Received:2025-03-21
Revised:2025-05-11
Published:2026-02-25
Online:2026-02-05
Contact:
Lei SHI
通讯作者:
石磊
作者简介:王晓萌(1998-),女,硕士研究生,从事光催化新材料的开发与利用方面的研究;E⁃mail:wxiaom0110@163.com。
基金资助:CLC Number:
Xiaomeng WANG, Zhimeng WANG, Lei SHI. Research Progress on the Modification of Carbon Nitride with Transition Metal⁃Based Cocatalysts[J]. Journal of Liaoning Petrochemical University, 2026, 46(1): 1-9.
王晓萌, 王志猛, 石磊. 过渡金属基助催化剂改性氮化碳的研究进展[J]. 辽宁石油化工大学学报, 2026, 46(1): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.lnpu.edu.cn/EN/10.12422/j.issn.1672-6952.2026.01.001
| 样品 | 光催化产氢速率/(μmol·h-1·g-1) | 文献 | 样品 | 光催化产氢速率/(μmol·h-1·g-1) | 文献 |
|---|---|---|---|---|---|
| SCNO/CoO | 11 495.00 | [ | MoP/g⁃C3N4 | 3 868.00 | [ |
| NiO/g⁃C3N4 | 68.20 | [ | CoS/g⁃C3N4 | 3 270.00 | [ |
| Ni2P/g⁃C3N4 | 3 344.00 | [ | MoN/g⁃C3N4 | 240.00 | [ |
| CoP/g⁃C3N4 | 1 074.00 | [ | MoN/g⁃C3N4 | 1 802.70 | [ |
| NiP2/g⁃C3N4 | 105.00 | [ | Ni3C/g⁃C3N4 | 303.60 | [ |
| FeP/g⁃C3N4 | 62.63 | [ | MoC/g⁃C3N4 | 233.00 | [ |
Table 1 Photocatalytic hydrogen production performance of g?C3N4 modified by transition metal cocatalysts
| 样品 | 光催化产氢速率/(μmol·h-1·g-1) | 文献 | 样品 | 光催化产氢速率/(μmol·h-1·g-1) | 文献 |
|---|---|---|---|---|---|
| SCNO/CoO | 11 495.00 | [ | MoP/g⁃C3N4 | 3 868.00 | [ |
| NiO/g⁃C3N4 | 68.20 | [ | CoS/g⁃C3N4 | 3 270.00 | [ |
| Ni2P/g⁃C3N4 | 3 344.00 | [ | MoN/g⁃C3N4 | 240.00 | [ |
| CoP/g⁃C3N4 | 1 074.00 | [ | MoN/g⁃C3N4 | 1 802.70 | [ |
| NiP2/g⁃C3N4 | 105.00 | [ | Ni3C/g⁃C3N4 | 303.60 | [ |
| FeP/g⁃C3N4 | 62.63 | [ | MoC/g⁃C3N4 | 233.00 | [ |
| 样品 | 模拟污染物 | 降解率/% | 文献 | 样品 | 模拟污染物 | 降解率/% | 文献 |
|---|---|---|---|---|---|---|---|
| Fe2O3/g⁃C3N4 | 罗丹明B | 95.7 | [ | Bi2O3/g⁃C3N4 | 罗丹明B | 94.8 | [ |
| Co3O4/g⁃C3N4 | 盐酸四环素 | 98.7 | [ | Cu2O/g⁃C3N4 | 盐酸四环素 | 90.0 | [ |
| g⁃C3N4/V2O5 | 罗丹明B | 60.3 | [ | MoS2/g⁃C3N4 | 罗丹明B | 92.2 | [ |
| MoO3/g⁃C3N4 | 罗丹明B | 93.3 | [ | FeS2/g⁃C3N4 | 盐酸四环素 | 93.0 | [ |
| MoO3/g⁃C3N4 | K2Cr2O7 | 79.3 | [ | g⁃C3N4/WS2 | 盐酸四环素 | 84.0 | [ |
| CeO2/g⁃C3N4 | 亚甲基蓝 | 75.0 | [ | g⁃C3N4/WS2 | 磺胺甲恶唑 | 96.0 | [ |
| Bi2O3/g⁃C3N4 | 对硝基苯酚 | 71.6 | [ | MoC/g⁃C3N4 | 罗丹明B | 98.0 | [ |
Table 2 Photocatalytic degradation performance of g?C3N4 modified by transition metal cocatalysts
| 样品 | 模拟污染物 | 降解率/% | 文献 | 样品 | 模拟污染物 | 降解率/% | 文献 |
|---|---|---|---|---|---|---|---|
| Fe2O3/g⁃C3N4 | 罗丹明B | 95.7 | [ | Bi2O3/g⁃C3N4 | 罗丹明B | 94.8 | [ |
| Co3O4/g⁃C3N4 | 盐酸四环素 | 98.7 | [ | Cu2O/g⁃C3N4 | 盐酸四环素 | 90.0 | [ |
| g⁃C3N4/V2O5 | 罗丹明B | 60.3 | [ | MoS2/g⁃C3N4 | 罗丹明B | 92.2 | [ |
| MoO3/g⁃C3N4 | 罗丹明B | 93.3 | [ | FeS2/g⁃C3N4 | 盐酸四环素 | 93.0 | [ |
| MoO3/g⁃C3N4 | K2Cr2O7 | 79.3 | [ | g⁃C3N4/WS2 | 盐酸四环素 | 84.0 | [ |
| CeO2/g⁃C3N4 | 亚甲基蓝 | 75.0 | [ | g⁃C3N4/WS2 | 磺胺甲恶唑 | 96.0 | [ |
| Bi2O3/g⁃C3N4 | 对硝基苯酚 | 71.6 | [ | MoC/g⁃C3N4 | 罗丹明B | 98.0 | [ |
| [1] | SHANG W Z, LIU W, CAI X B, et al. Insights into atomically dispersed reactive centers on g⁃C3N4 photocatalysts for water splitting[J]. Advanced Powder Materials, 2023, 2(2): 100094. |
| [2] | 齐卫卫, 秦雷, 周明东, 等. RuHI(CO)(i⁃Pr⁃Imidazole)(PPh3)2催化甲醇水重整产氢[J]. 石油化工高等学校学报, 2021, 34(2): 29⁃34. |
| QI W W, QIN L, ZHOU M D, et al. Hydrogen production by RuHI(CO)(i⁃Pr⁃Imidazole)(PPh3)2 catalyzed aqueous methanol reforming[J]. Journal of Petrochemical Universities, 2021, 34(2): 29⁃34. | |
| [3] | 曹雪, 李秀萍, 江进, 等. 花状钼酸钴的制备及其好氧氧化脱硫性能[J]. 辽宁石油化工大学学报, 2024, 44(2): 14⁃21. |
| CAO X, LI X P, JIANG J, et al. Preparation of flower⁃like cobalt molybdate and its aerobic oxidation desulfurization performance[J]. Journal of Liaoning Petrochemical University, 2024, 44(2): 14⁃21. | |
| [4] | GONG H Y, WANG L, ZHOU K C, et al. Improved photocatalytic performance of gradient reduced TiO2 ceramics with aligned pore channels[J]. Advanced Powder Materials, 2022, 1(3): 100025. |
| [5] | 李盛龙, 孙玮, 吴晶, 等. 纳米铁酸铋的制备、改性及光催化应用[J]. 石油炼制与化工, 2024, 55(2): 135⁃143. |
| LI S L, SUN W, WU J, et al. Fabrication, modification and photocatalytic applications of bismuth ferrite nanomaterials[J]. Petroleum Processing and Petrochemicals, 2024, 55(2): 135⁃143. | |
| [6] | 王庭伟, 端木传嵩, 孟新宇, 等. 过渡金属硫化物催化剂性能优化与光催化水分解制氢研究进展[J]. 低碳化学与化工, 2024, 49(9): 41⁃50. |
| WANG T W, DUANMU C S, MENG X Y, et al. Research progress in optimization of transition metal sulfide catalysts and hydrogen production from photocatalytic water splitting[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2024, 49(9): 41⁃50. | |
| [7] | WEN J T, WANG G, HAO P C, et al. Nongraphitic carbon nitride melem oligomer nanosheets for photocatalytic degradation of organic pollutants[J]. ACS Applied Nano Materials, 2022, 5(9): 13659⁃13670. |
| [8] | LI Y, TSANG S C E. Recent progress and strategies for enhancing photocatalytic water splitting[J]. Materials Today Sustainability, 2020, 9: 100032. |
| [9] | MADHUSUDAN P, SHI R, XIANG S L, et al. Construction of highly efficient Z⁃scheme ZnxCd1- xS/Au@g⁃C3N4 ternary heterojunction composite for visible⁃light⁃driven photocatalytic reduction of CO2 to solar fuel[J]. Applied Catalysis B⁃Environmental, 2021, 282: 119600. |
| [10] | LIU S Z, ZHANG B L, YANG Z H, et al. Deep eutectic solvothermal NiS2/CdS synthesis for the visible⁃light⁃driven valorization of the biomass intermediate 5⁃hydroxymethylfurfural(HMF) integrated with H2 production[J]. Green Chemistry, 2023, 25(7): 2620⁃2628. |
| [11] | XING W N, TU W G, HAN Z H, et al. Template⁃induced high⁃crystalline g⁃C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3): 514⁃519. |
| [12] | CHEN L, MAIGBAY M A, LI M, et al. Synthesis and modification strategies of g⁃C3N4 nanosheets for photocatalytic applications[J]. Advanced Powder Materials, 2024, 3(1): 100150. |
| [13] | JIANG K X, ZHU L, WANG Z H, et al. Plasma⁃treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride[J]. Applied Surface Science, 2020, 508: 145173. |
| [14] | FU J W, JIANG K X, QIU X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222⁃243. |
| [15] | LIANG D, LUO J J, HUANG Y L, et al. Z⁃scheme cathodic photoelectrochemical sensors for detection of hydrogen sulfide based on AgCl⁃Ag coupled with porous carbon nitride[J]. Applied Surface Science, 2020, 532: 147424. |
| [16] | LIANG D, LUO J J, LIANG X, et al. An "on⁃off⁃super on" photoelectrochemical sensor based on quenching by Cu⁃induced surface exciton trapping and signal amplification of copper sulfide/porous carbon nitride heterojunction[J]. Chemosphere, 2021, 267: 129218. |
| [17] | LIANG D, LIANG X, ZHANG Z X, et al. A regenerative photoelectrochemical sensor based on functional porous carbon nitride for Cu2+ detection[J]. Microchemical Journal, 2020, 156: 104922. |
| [18] | YAN P C, JIN Y C, XU L, et al. Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine[J]. Biosensors and Bioelectronics, 2022, 206: 114144. |
| [19] | WU J H, SHAO F Q, LUO X Q, et al. Pd nanocones supported on g⁃C3N4: An efficient photocatalyst for boosting catalytic reduction of hexavalent chromium under visible⁃light irradiation[J]. Applied Surface Science, 2019, 471: 935⁃942. |
| [20] | ABID M Z, RAFIQ K, RAUF A, et al. Synergism of Co/Na in BiVO4 microstructures for visible⁃light driven degradation of toxic dyes in water[J]. Nanoscale Advances, 2023, 5(12): 3247⁃3259. |
| [21] | HUSSAIN E, MAJEED I, NADEEM M A, et al. Titania⁃supported palladium/strontium nanoparticles(Pd/Sr⁃NPs@P25) for photocatalytic H2 production from water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(31): 17205⁃17213. |
| [22] | HOJAMBERDIEV M, KHAN M M, KADIROVA Z, et al. Synergistic effect of g⁃C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation[J]. Renewable Energy, 2019, 138: 434⁃444. |
| [23] | SCHLESINGER H I, BROWN H C, FINHOLT A E, et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen[J]. Journal of the American Chemical Society, 1953, 75(1): 215⁃219. |
| [24] | ÜLKER E. Hydrothermally synthesized cobalt borophosphate as an electrocatalyst for water oxidation in the pH range from 7 to 14[J]. ChemElectroChem, 2019, 6(12): 3132⁃3138. |
| [25] | YE S, QIU L G, YUAN Y P, et al. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light[J]. Journal of Materials Chemistry A, 2013, 1(9): 3008⁃3015. |
| [26] | YING H H, HUANG Z W, DONG G M, et al. The charge transfer pathway of CoO QDs/g⁃C3N4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Photochemistry and Photobiology A⁃Chemistry, 2021, 415: 113305. |
| [27] | LIU J N, JIA Q H, LONG J L, et al. Amorphous NiO as co⁃catalyst for enhanced visible⁃light⁃driven hydrogen generation over g⁃C3N4 photocatalyst[J]. Applied Catalysis B⁃Environmental, 2018, 222: 35⁃43. |
| [28] | JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g⁃C3N4 Z⁃scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate⁃mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398: 125569. |
| [29] | LIU Q Q, FAN C Y, TANG H, et al. One⁃pot synthesis of g⁃C3N4/V2O5 composites for visible light⁃driven photocatalytic activity[J]. Applied Surface Science, 2015, 358(Part A): 188⁃195. |
| [30] | LUO J M, HAN H N, WU J W, et al. Excellent photocatalytic activity of MoO3⁃adorned g⁃C3N4 systems: Construction of S⁃scheme heterojunction[J]. Applied Surface Science, 2022, 604: 154512. |
| [31] | QIAO Q, YANG K, MA L L, et al. Facile in situ construction of mediator⁃free direct Z⁃scheme g⁃C3N4/CeO2 heterojunctions with highly efficient photocatalytic activity[J]. Journal of Physics D⁃Applied Physics, 2018, 51(27): 275302. |
| [32] | WANG D B, YU X, FENG Q G, et al. In⁃situ growth of β⁃Bi2O3 nanosheets on g⁃C3N4 to construct direct Z⁃scheme heterojunction with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds, 2021, 859: 157795. |
| [33] | LIU H, ZHU X D, HAN R, et al. Study on the internal electric field in the Cu2O/g⁃C3N4 p-n heterojunction structure for enhancing visible light photocatalytic activity[J]. New Journal of Chemistry, 2020, 44(5): 1795⁃1805. |
| [34] | DU H T, KONG R M, GUO X X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution[J]. Nanoscale, 2018, 10(46): 21617⁃21624. |
| [35] | LIU E Z, JIN C Y, XU C H, et al. Facile strategy to fabricate Ni2P/g⁃C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21355⁃21364. |
| [36] | LUO B, SONG R, GENG J F, et al. Towards the prominent cocatalytic effect of ultra⁃small CoP particles anchored on g⁃C3N4 nanosheets for visible light driven photocatalytic H2 production[J]. Applied Catalysis B⁃Environmental, 2019, 256: 117819. |
| [37] | YAN X Q, AN H, CHEN Z H, et al. Significantly enhanced charge transfer efficiency and surface reaction on NiP2/g⁃C3N4 heterojunction for photocatalytic hydrogen evolution[J]. Chinese Journal of Chemical Engineering, 2022, 43: 31⁃39. |
| [38] | DI Y Q, LI H X, YU X B, et al. One⁃step preparation of star⁃shaped Fe5(PO4)4(OH)3⁃modified g⁃C3N4 for high⁃efficiency sacrificial⁃agent⁃free photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2025, 698: 138031. |
| [39] | CHENG C, ZONG S C, SHI J W, et al. Facile preparation of nanosized MoP as cocatalyst coupled with g⁃C3N4 by surface bonding state for enhanced photocatalytic hydrogen production[J]. Applied Catalysis B⁃Environmental, 2020, 265: 118620. |
| [40] | FU J W, BIE C B, CHENG B, et al. Hollow CoSx polyhedrons act as high⁃efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g⁃C3N4[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2767⁃2779. |
| [41] | HU X L, WANG L Y, ZHANG W J, et al. In⁃situ synthesis and enhanced photocatalytic nitrogen fixation property of novel NiS/g⁃C3N4 heterostructure photocatalysts with nitrogen vacancy[J]. Diamond and Related Materials, 2023, 140(Part B): 110533. |
| [42] | XIE C, XU L, YE X, et al. Composites of MoS2 nanosheets and graphitic carbon nitride nanosheets for photocatalytic mercury removal[J]. ACS Applied Nano Materials, 2021, 4(11): 11861⁃11869. |
| [43] | LI L, GAO J, YUAN Y M, et al. Study on FeS2/g⁃C3N4 as a photo⁃fenton heterojunction catalyst for tetracycline degradation with H2O2 under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 134⁃144. |
| [44] | FAN X Y, MA Y B, WANG X, et al. In⁃situ construction of CoS on porous g⁃C3N4 for fluent charge transfer in photocatalytic hydrogen production[J]. Applied Surface Science, 2024, 660: 160018. |
| [45] | GNANAGURU M V L, NAUSHAD M, TATARCHUK T, et al. One⁃step calcination synthesis of 2D/2D g⁃C3N4/WS2 van der waals heterojunction for visible light⁃induced photocatalytic degradation of pharmaceutical pollutants[J]. Environmental Science and Pollution Research International, 2023, 30(32): 78537⁃78553. |
| [46] | DU J F, SHEN Y L, YANG F, et al. In⁃situ topology synthesis of defective MoN nanosheets/g⁃C3N4 2D/2D heterojunction photocatalyst for efficient H2 production[J]. Applied Surface Science, 2023, 608: 155199. |
| [47] | XIA K X, CHEN Z G, YI J J, et al. Highly efficient visible⁃light⁃driven schottky catalyst MoN/2D g⁃C3N4 for hydrogen production and organic pollutants degradation[J]. Industrial & Engineering Chemistry Research, 2018, 57(27): 8863⁃8870. |
| [48] | 韩璐璐. 石墨型氮化碳负载金属氮化物衍生双功能电催化剂的合成及其电催化分解水的性能研究[D]. 沈阳: 东北大学, 2022. |
| [49] | TAHIR W, ULLAH S, ULLAH I, et al. Metallic WN plasmonic fabricated g⁃C3N4 significantly steered photocatalytic hydrogen evolution under visible and near⁃infrared light[J]. Catalysis Science & Technology, 2022, 12(24): 7369⁃7378. |
| [50] | GUO H, NIU C G, YANG Y Y, et al. Interfacial Co-N bond bridged CoB/g⁃C3N4 schottky junction with modulated charge transfer dynamics for highly efficient photocatalytic Staphylococcus aureus inactivation[J]. Chemical Engineering Journal, 2021, 422: 130029. |
| [51] | XIAN Y X, LI Z Q, PENG L Z, et al. MoB2 modified g⁃C3N4: A schottky junction with enhanced interfacial redox activity and charge separation for efficient photocatalytic H2 evolution[J]. Separation and Purification Technology, 2024, 345: 127337. |
| [52] | 曹萌. 镍铜磷及硼化镍改性的g⁃C3N4电催化剂的制备和析氢性能的研究[D]. 秦皇岛: 燕山大学, 2018. |
| [53] | JIN D X, LV Y H, HE D Y, et al. Photocatalytic degradation of COVID⁃19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g⁃C3N4 schottky junction photocatalyst[J]. Chemosphere, 2022, 308: 136461. |
| [54] | HE K L, XIE J, LIU Z Q, et al. Multi⁃functional Ni3C cocatalyst/g⁃C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light[J]. Journal of Materials Chemistry A, 2018, 6(27): 13110⁃13122. |
| [55] | SONG P H, ZHANG X, WANG B, et al. MoC nanoparticles embedded in superior thin g⁃C3N4 nanosheets for efficient photocatalytic activity[J]. Colloids and Surfaces A⁃Physicochemical and Engineering Aspects, 2024, 702: 135132. |
| [56] | TO D T, JUAN J C, TSAI M H, et al. Conversion of CO2 to light hydrocarbons by using FeCx catalysts derived from iron nitrate co⁃pyrolyzing with melamine, bulk g⁃C3N4, or defective g⁃C3N4[J]. Catalysis Surveys from Asia, 2023, 27(3): 260⁃269. |
| [1] | Chunhui YANG, Jing LI, Weiwei SHI, Haiyan QIAO, Dongyun HAN, Tianyu TONG. Preparation of Coated Asphalt by Catalytic Polymerization by Modified Heavy Oil Blends [J]. Journal of Liaoning Petrochemical University, 2025, 45(6): 1-10. |
| [2] | Yan ZHANG, Zhengyi SONG, Liu WAN, Cheng DU, Mingjiang XIE, Jian CHEN. Research on the Construction of CdS/Mg⁃CdIn2S4 Heterostructures and Their Catalytic Performance in CO2 Photoreduction [J]. Journal of Liaoning Petrochemical University, 2025, 45(5): 28-36. |
| [3] | Tianqiang LIU, Weiwei JIAN, Qiuyan HAI, Hong ZHANG. An Experimental Study on the Adsorption of Benzene Utilizing CuO and Alkali⁃Modified Coconut Shell Activated Carbon [J]. Journal of Liaoning Petrochemical University, 2025, 45(4): 27-35. |
| [4] | Bohan ZHUANG, Weiwei JIAN, Qiuyan HAI, Tianqiang LIU. Experimental Study on the Combined Adsorption of SO2 and NO by Bimetallic Modified Multi⁃Walled Carbon Nanotubes [J]. Journal of Liaoning Petrochemical University, 2025, 45(3): 26-33. |
| [5] | Lin ZHANG, Xiaojie GONG, Lihua LI. Photocatalytic Degradation of Tetracycline Hydrochloride by CeO2@UiO⁃66 [J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 8-14. |
| [6] | Jing LI, Zibo LIN, Fanyu MENG, Shengjing HUANG, Fuyun LI. Effect of Microalgae Bio⁃Oil on the Properties of Rubber/SBS Modified Asphalt [J]. Journal of Liaoning Petrochemical University, 2024, 44(4): 18-24. |
| [7] | Yuluan Zhang, Can Guo, Luanhua Zhou, Xiaoman Yao, Yiwen Yang, Huifen Zhuang, Yirong Wang, Yifa Chen, Shunli Li, Yaqian Lan. Applications of Covalent Organic Frameworks in Li⁃S Battery Separators [J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 19-29. |
| [8] | Xiangyu Ren, Baokuan Chen, Jing Sun, Yanfeng Bi. Double Polyoxometalates⁃Based Metal⁃Organic Framework with Photocatalytic Degradation Properties [J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 51-58. |
| [9] | Yushi Wei, Rui Wang, Zhuang Lin, Heng Jiang, Mingren Huo, Xinyue Chen, Xiaoyan Liang, Chongyang Zhang. Facile Fabrication of Fe3O4⁃Based β⁃Cyclodextrin Polymers and Its Adsorption Performances [J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 28-35. |
| [10] | Chun Kang, Huiqiang Ma, Shuang Li. Fe⁃Doped g⁃C3N4 Photocatalytic Activation of Persulfate for Degradation of Azo Dyes [J]. Journal of Liaoning Petrochemical University, 2022, 42(5): 13-17. |
| [11] | Yongxin Fei, Huiqiang Ma, Shuang Li. Study on Adsorption Performance of Modified Activated Sludge Biochar for Phenol in Water [J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 19-24. |
| [12] | Changdong Chen, Zhe Li, Ke Li, Jinying Cong, Yuhang Yang, Fangfang Wang. Topological Transition Synthesis and Properties of TiO2 Homogeneous Materials [J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 37-41. |
| [13] | Siqi Tong, Weiwei Jian, Qiuyan Hai, Weixin Xie, Yi Sun. Research Progress of Porous Solid Materials for CO2 Adsorption and Removal [J]. Journal of Liaoning Petrochemical University, 2022, 42(2): 30-37. |
| [14] | Yonghui Zhang, Xuebing Chen, Jing Zhang. Research Progress on Modification of Bismuth Oxide as Visible Light Photocatalyst [J]. Journal of Liaoning Petrochemical University, 2021, 41(6): 1-8. |
| [15] | Jie Li, Kexin Fang, Lizhu Yao. Preparation and Photocatalytic Degradation Rhodamine B Properties of CNTs/Bi12O17Cl2 Photocatalyst [J]. Journal of Liaoning Petrochemical University, 2021, 41(6): 42-47. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Liaoning Petrochemical University
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56865105 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.