Journal of Liaoning Petrochemical University ›› 2025, Vol. 45 ›› Issue (3): 57-63.DOI: 10.12422/j.issn.1672-6952.2025.03.008

• Oil and Gas Engineering • Previous Articles     Next Articles

Research on Reservoir History Matching Method Based on Real⁃Coded Genetic Algorithm and Connectivity Model

Ainiwaer AILIYAER1(), Chunli ZHAO1(), Feng LIU2   

  1. 1.College of Petroleum Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China
    2.College of Petroleum Engineering,Xi'an Shiyou University,Xi'an Shaanxi 610101,China
  • Received:2024-03-13 Revised:2024-04-01 Published:2025-06-25 Online:2025-07-02
  • Contact: Chunli ZHAO

基于实数编码遗传算法与连通性模型的油藏历史拟合方法研究

艾力牙尔·艾尼瓦尔1(), 赵春立1(), 刘峰2   

  1. 1.辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113001
    2.西安石油大学 石油工程学院,陕西 西安 610101
  • 通讯作者: 赵春立
  • 作者简介:艾力牙尔·艾尼瓦尔(1996⁃),男,硕士研究生,从事油气田开发方面的研究;E⁃mail:yiliyar@foxmail.com
  • 基金资助:
    国家自然科学基金项目(51804253)

Abstract:

The optimization process in reservoir history matching belongs to the high?dimensional system's optimal control problem, and the selection of a suitable optimization algorithm is crucial for achieving a good fitting effect. As gradient?based methods face challenges in computing the gradient of the objective function, intelligent optimization algorithms with stochastic properties are widely applied in reservoir optimization processes. A method for reservoir history matching based on real?number coding genetic algorithm RGA and connectivity model was proposed. This method eliminates the need for encoding and decoding operations by directly using feasible solutions obtained from traditional solving methods as initial parameters for the improved genetic algorithm, thereby reducing the complexity of the search space. In RGA, real?number coding is employed to represent parameters, enabling the algorithm to handle continuous variables directly, thus enhancing search accuracy and convergence speed. A adaptive selection strategies, crossover, and mutation operations are introduced in this paper to further enhance the algorithm's performance. Application of RGA to the history matching problem in a mechanistic model demonstrates that RGA can effectively improve fitting results and find relatively optimal solutions in a short time. Therefore, this method has significant potential for widespread application in reservoir history matching problems.

Key words: Reservoir history matching, Optimization algorithm, Real?coded, Genetic algorithm, Numerical simulation of oil reservoirs

摘要:

油藏历史拟合优化问题属于高维系统最优控制问题,选择合适的优化算法对实现良好的拟合效果至关重要。由于梯度类方法在计算目标函数梯度时存在困难,随机性智能优化算法被广泛应用于油藏优化过程。提出了一种基于实数编码遗传算法(RGA)与连通性模型的油藏历史拟合问题的方法。该方法无须编码解码操作,直接将传统方法求解得到的可行解作为改进遗传算法的初始参数,可有效降低搜索空间的复杂性;在RGA中,采用实数编码直接表示参数,算法能够处理连续变量,可提升搜索的精度和收敛速度;引入自适应选择策略、交叉与变异操作,可进一步优化算法性能。结果表明,RGA能够有效提高拟合效果,并在较短时间内获得较优解,该方法在油藏历史拟合领域具有广阔的应用前景。

关键词: 油藏历史拟合, 优化算法, 实数编码, 遗传算法, 油藏数值模拟

CLC Number: 

Cite this article

Ainiwaer AILIYAER, Chunli ZHAO, Feng LIU. Research on Reservoir History Matching Method Based on Real⁃Coded Genetic Algorithm and Connectivity Model[J]. Journal of Liaoning Petrochemical University, 2025, 45(3): 57-63.

艾力牙尔·艾尼瓦尔, 赵春立, 刘峰. 基于实数编码遗传算法与连通性模型的油藏历史拟合方法研究[J]. 辽宁石油化工大学学报, 2025, 45(3): 57-63.