Journal of Liaoning Petrochemical University ›› 2024, Vol. 44 ›› Issue (5): 44-53.DOI: 10.12422/j.issn.1672-6952.2024.05.007
• Oil and Gas Engineering (Deep Oil and Gas Development Technology) • Previous Articles Next Articles
Yulong ZHAO1(), Xianyu QIANG1(), Ruihan ZHANG1, Bin ZHU2, Xiangyu LIU1
Received:
2024-09-09
Revised:
2024-09-30
Published:
2024-10-25
Online:
2024-11-01
Contact:
Xianyu QIANG
赵玉龙1(), 强贤宇1(), 张芮菡1, 朱斌2, 刘香禹1
通讯作者:
强贤宇
作者简介:
赵玉龙(1986⁃),男,博士,研究员,博士生导师,从事复杂油气藏渗流理论、非常规油气藏开发、数值模拟、试井分析等方面的研究;E⁃mail:373104686@qq.com。
基金资助:
CLC Number:
Yulong ZHAO, Xianyu QIANG, Ruihan ZHANG, Bin ZHU, Xiangyu LIU. Research Progress on Reservoir Characteristics and Seepage Characteristics of Deep and Ultra⁃Deep Carbonate Oil and Gas Reservoirs[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 44-53.
赵玉龙, 强贤宇, 张芮菡, 朱斌, 刘香禹. 深层⁃超深层碳酸盐岩油气藏储层特征及渗流特征研究进展[J]. 辽宁石油化工大学学报, 2024, 44(5): 44-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.lnpu.edu.cn/EN/10.12422/j.issn.1672-6952.2024.05.007
技术方法 | 应用尺度 | 优点 | 局限性 |
---|---|---|---|
FE⁃SEM | 纳米 | 高分辨率纳米结构表征,表面形貌清晰 | 只能进行二维表征,样品制备复杂 |
FIB⁃SEM | 纳米 | 可进行三维孔隙结构表征,尤其适用于复杂结构 | 成本高,适用样品范围有限 |
多尺度CT扫描 | 微米至厘米 | 可表征不同尺度下的孔隙结构,具有多尺度分析能力 | 成本极高,复杂度较高,适用于重要样品的研究 |
压汞孔隙度测定法(MIP)与NMR结合 | 纳米至微米 | 结合分形维度,准确描述复杂孔隙结构,提升预测精度 | 需要结合不同技术,操作复杂,适用性依赖于样品特性 |
Table 1 Comparison of pore structure characterization techniques for deep-ultra deep carbonate reservoirs
技术方法 | 应用尺度 | 优点 | 局限性 |
---|---|---|---|
FE⁃SEM | 纳米 | 高分辨率纳米结构表征,表面形貌清晰 | 只能进行二维表征,样品制备复杂 |
FIB⁃SEM | 纳米 | 可进行三维孔隙结构表征,尤其适用于复杂结构 | 成本高,适用样品范围有限 |
多尺度CT扫描 | 微米至厘米 | 可表征不同尺度下的孔隙结构,具有多尺度分析能力 | 成本极高,复杂度较高,适用于重要样品的研究 |
压汞孔隙度测定法(MIP)与NMR结合 | 纳米至微米 | 结合分形维度,准确描述复杂孔隙结构,提升预测精度 | 需要结合不同技术,操作复杂,适用性依赖于样品特性 |
区域 | 尺度 | 介质类型 | 模型类型与方法 |
---|---|---|---|
微观介质区 | 小(10⁻⁹~<10⁻⁶ m) | 离散介质(孔隙、骨架) | 分子结构模型(密度泛函理论、分子动力学、蒙特卡罗方法)、数字岩心(格子玻尔兹曼方法、光滑粒子流体动力学、纳维⁃斯托克斯方程的直接数值模拟) |
岩心尺度 | 中等(10⁻⁶~<10⁻² m) | 连续介质(基岩、天然裂缝) | 连续介质模型(达西方程、非达西方程) |
宏观介质区 | 大(10⁻²~1 m) | 离散介质(大裂缝、溶洞) | 离散裂缝(洞)模型(达西方程、N⁃S或Brinkman方程) |
Table 2 Comparison of different scale seepage model
区域 | 尺度 | 介质类型 | 模型类型与方法 |
---|---|---|---|
微观介质区 | 小(10⁻⁹~<10⁻⁶ m) | 离散介质(孔隙、骨架) | 分子结构模型(密度泛函理论、分子动力学、蒙特卡罗方法)、数字岩心(格子玻尔兹曼方法、光滑粒子流体动力学、纳维⁃斯托克斯方程的直接数值模拟) |
岩心尺度 | 中等(10⁻⁶~<10⁻² m) | 连续介质(基岩、天然裂缝) | 连续介质模型(达西方程、非达西方程) |
宏观介质区 | 大(10⁻²~1 m) | 离散介质(大裂缝、溶洞) | 离散裂缝(洞)模型(达西方程、N⁃S或Brinkman方程) |
1 | 甘利灯, 张昕, 王峣钧, 等. 从勘探领域变化看地震储层预测技术现状和发展趋势[J]. 石油地球物理勘探, 2018, 53(1): 214⁃225. |
GAN L D, ZHANG X, WANG Y J, et al. Current status and development trends of seismic reservoir prediction viewed from the exploration industry[J]. Oil Geophysical Prospecting, 2018, 53(1): 214⁃225. | |
2 | 潘建国, 李劲松, 王宏斌, 等. 深层⁃超深层碳酸盐岩储层地震预测技术研究进展与趋势[J]. 中国石油勘探, 2020, 25(3): 156⁃166. |
PAN J G, LI J S, WANG H B, et al. Research progress and trend of seismic prediction technology for deep and ultra⁃deep carbonate reservoir[J]. China Petroleum Exploration, 2020, 25(3): 156⁃166. | |
3 | 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669⁃678. |
LI Y, KANG Z J, XUE Z J, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669⁃678. | |
4 | SHARIFI J, MOGHADDAS N H, SABERI M R, et al. A novel approach for fracture porosity estimation of carbonate reservoirs[J]. Geophysical Prospecting, 2023, 71(4): 664⁃681. |
5 | WEI L, DI B R, WEI J X. Analysis of seismic response characteristics of fractured carbonate reservoirs based on physical model(Tarim basin)[J]. Applied Sciences, 2024, 14(9): 3775. |
6 | SHI J X, ZHAO X Y, PAN R F, et al. Natural fractures in the deep Sinian carbonates of the central Sichuan Basin, China: Implications for reservoir quality[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110829. |
7 | 闫海军, 邓惠, 万玉金, 等. 四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J]. 天然气地球科学, 2020, 31(8): 1152⁃1160. |
YAN H J, DENG H, WAN Y J, et al. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth member of Dengying formation in Moxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1152⁃1160. | |
8 | 刘历历,解英明,李育展,等.低压气井修井注气吞吐复产气液两相渗流规律[J]. 新疆石油天然气,2023,19(2):75⁃81. |
LIU L L,XIE Y M,LI Y Z,et al. The law of gas⁃liquid two⁃phase seepage for workover gas injection huff and puff production recovery in low⁃pressure gas wells[J]. Xinjiang Oil & Gas,2023,19(2):75⁃81. | |
9 | YAO Y T, ZENG L B, DONG S Q, et al. Using seismic methods to detect connectivity of fracture networks controlled by strike⁃slip faults in ultra⁃deep carbonate reservoirs: A case study in northern Tarim Basin, China[J]. Journal of Structural Geology, 2024, 180: 105060. |
10 | WANG Q H, ZHANG Y T, XIE Z, et al. The advancement and challenges of seismic techniques for ultra⁃deep carbonate reservoir exploitation in the Tarim Basin of northwestern China[J]. Energies, 2022, 15(20): 7653. |
11 | ZHOU Y, YANG F L, JI Y L, et al. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying formation, central Sichuan basin, southwestern China[J]. Precambrian Research, 2020, 343: 105708. |
12 | 张炜,侯吉瑞,屈鸣,等.基于3D打印和纳米黑卡技术提高缝洞型碳酸盐岩储层采收率[J].油田化学,2024,41(3): 465⁃473. |
ZHANG W, HOU J R, QU M,et al. Enhanced oil recovery in fractured⁃vuggy carbonate reservoirs based on 3D printing and black nano⁃sheet technology [J]. Oilfield Chemistry, 2024,41(3):465⁃473. | |
13 | WANG L, HE Y M, PENG X, et al. Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng Ⅳ member, Gaoshiti⁃Moxi area, Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2020, 111: 44⁃65. |
14 | CHENG Y Y, LUO X, ZHUO Q G, et al. Description of pore structure of carbonate reservoirs based on fractal dimension[J]. Processes, 2024, 12(4): 825. |
15 | QI Y X, LIU K X, PENG Y, et al. Visualization of mercury percolation in porous hardened cement paste by means of X⁃ray computed tomography[J]. Cement and Concrete Composites, 2021, 122: 104111. |
16 | WANG H L, TIAN L, CHAI X L, et al. Effect of pore structure on recovery of CO2 miscible flooding efficiency in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109305. |
17 | ZENG Q, CHEN S, YANG P C, et al. Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement⁃based porous materials by monitoring the mercury entrapments with X⁃ray computed tomography[J]. Cement and Concrete Composites, 2020, 113: 103726. |
18 | ZHANG Y X, YANG S L, ZHANG Z, et al. Multiscale pore structure characterization of an ultra⁃deep carbonate gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109751. |
19 | CHENG Y Y, LUO X, ZHUO Q G, et al. Description of pore structure of carbonate reservoirs based on fractal dimension[J]. Processes, 2024, 12(4): 825. |
20 | HOU J, ZHAO L, ZENG X, et al. Characterization and evaluation of carbonate reservoir pore structure based on machine learning[J]. Energies, 2022, 15(19): 7126. |
21 | ABDULAZIZ A M, MAHDI H A, SAYYOUH M H. Prediction of reservoir quality using well logs and seismic attributes analysis with an artificial neural network: A case study from Farrud reservoir, Al⁃Ghani field, Libya[J]. Journal of Applied Geophysics, 2019, 161: 239⁃254. |
22 | BOATENG C D, FU L Y, DANUOR S K. Characterization of complex fluvio⁃deltaic deposits in northeast China using multi⁃modal machine learning fusion[J]. Scientific Reports, 2020, 10(1): 13357. |
23 | ESMAEILZADEH S, SALEHI A, HETZ G, et al. A general spatio⁃temporal clustering⁃based non⁃local formulation for multiscale modeling of compartmentalized reservoirs[C]//SPE Western Regional Meeting. Calgary: SPE, 2019: SPE⁃195329⁃MS. |
24 | YASIN Q, DING Y, BAKLOUTI S, et al. An integrated fracture parameter prediction and characterization method in deeply⁃buried carbonate reservoirs based on deep neural network[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109346. |
25 | SUN P. Fracture identification and porosity prediction of carbonate reservoirs based on neural network simulation[C]//E3S Web of Conferences. Singapore: EEMS, 2024, 561: 03001. |
26 | SPENCE G H, COUPLES G D, BEVAN T G, et al. Advances in the study of naturally fractured hydrocarbon reservoirs: A broad integrated interdisciplinary applied topic[J]. Geological Society, London,Special Publication, 2014, 374(1): 1⁃22. |
27 | YAO S F, DING W L. Application of support vector machine in porosity prediction of carbonate reservoirs[J]. International Journal of Computational Intelligence Systems and Applications, 2019, 7(1): 28⁃37. |
28 | YASIN Q, SOHAIL G M, DING Y, et al. Estimation of petrophysical parameters from seismic inversion by combining particle swarm optimization and multilayer linear calculator[J]. Natural Resources Research, 2020, 29(5): 3291⁃3317. |
29 | 李昂,吴柠羽,张丽艳,等.页岩储层不同尺度断裂识别方法[J]. 新疆石油天然气,2024,20(3):30⁃36. |
LI A,WU N Y,ZHANG L Y,et al. Faults at various scales identification techniques in shale reservoirs[J]. Xinjiang Oil & Gas,2024,20(3):30⁃36. | |
30 | DAS V, MUKERJI T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks[J]. Geophysics, 2020, 85(5): N41⁃N55. |
31 | ZHAO L X, ZOU C F, CHEN Y Y, et al. Fluid and lithofacies prediction based on integration of well⁃log data and seismic inversion: A machine⁃learning approach[J]. Geophysics, 2021, 86(4): M151⁃M165. |
32 | CHEN Y Y, ZHAO L X, PAN J G, et al. Deep carbonate reservoir characterisation using multi⁃seismic attributes via machine learning with physical constraints[J]. Journal of Geophysics and Engineering, 2021, 18(5): 761⁃775. |
33 | ZHAO L X, ZHU X Y, ZHAO X Y, et al. Deep carbonate reservoir characterization using multiseismic attributes: A comparison of unsupervised machine⁃learning approaches[J]. Geophysics, 2024, 89(2): B65⁃B82. |
34 | DUAN Y T, ZHENG X D, HU L L, et al. Seismic facies analysis based on deep convolutional embedded clustering[J]. Geophysics, 2019, 84(6): IM87⁃IM97. |
35 | ZHU D L, CUI J B, LI Y, et al. Adaptive gaussian mixture model and convolution autoencoder clustering for unsupervised seismic waveform analysis[J]. Interpretation, 2022, 10(1): T181⁃T193. |
36 | LIU B, YASIN Q, SOHAIL G M, et al. Seismic characterization of fault and fractures in deep buried carbonate reservoirs using CNN⁃LSTM based deep neural networks[J]. Geoenergy Science and Engineering, 2023, 229: 212126. |
37 | LÜ B N, CHEN X H, QIE C C, et al. Integrated characterization of deep karsted carbonates in the Tahe oilfield, Tarim basin[J]. Journal of Geophysics and Engineering, 2024, 21(2): 668⁃684. |
38 | 孙建孟, 孙晓娟, 迟蓬, 等. 数字岩心和数字井筒技术研究与应用进展[J]. 石油物探, 2023, 62(5): 806⁃819. |
SUN J M, SUN X J, CHI P, et al. Digital cores and digital wellbore technology: Application and research progress[J]. Geophysical Prospecting for Petroleum, 2023, 62(5): 806⁃819. | |
39 | 贾然. 滨里海盆地石炭系储层综合分析与地质储量评估[J]. 录井工程, 2024,35(1): 127⁃135. |
JIA R. Comprehensive analysis and geologic reserve evaluation of Carboniferous reservoirs in the Marginal Caspian Basin[J]. Mud Logging Engineering, 2024,35(1): 127⁃135. | |
40 | 李文涛, 涂利辉, 鲁明宇, 等. 基于数字岩心的碳酸盐岩复杂孔隙特征研究——以普光气田飞仙关组储层为例[J]. 断块油气田, 2024, 31(1): 114⁃122. |
LI W T, TU L H, LU M Y, et al. Study on complex pore characteristics of carbonate reservoirs based on digital core: A case study of Feixianguan formation in Puguang gas field[J]. Fault⁃Block Oil and Gas Field, 2024, 31(1): 114⁃122. | |
41 | TIAN F, LUO X R, ZHANG W. Integrated geological⁃geophysical characterizations of deeply buried fractured⁃vuggy carbonate reservoirs in Ordovician strata, Tarim Basin[J]. Marine and Petroleum Geology, 2019, 99: 292⁃309. |
42 | REN Q Q, JIN Q, FENG J W, et al. Geomechanical models for the quantitatively prediction of multi⁃scale fracture distribution in carbonate reservoirs[J]. Journal of Structural Geology, 2020, 135: 104033. |
43 | HU X Y, ZHENG W B, ZHAO X Y, et al. Quantitative characterization of deep fault⁃karst carbonate reservoirs: A case study of the Yuejin block in the Tahe Oilfield[J]. Energy Geoscience, 2023, 4(3): 100153. |
44 | WANG L. Ultradeep carbonate gas reservoirs: Reservoir characteristics and percolation mechanism[M]. Singapore: Springer, 2023. |
45 | HORNUNG U. Homogenization and porous media[M]. New York: Springer, 2012. |
46 | GLÄSER D, HELMIG R, FLEMISCH B, et al. A discrete fracture model for two⁃phase flow in fractured porous media[J]. Advances in Water Resources, 2017, 110: 335⁃348. |
47 | WANG D G, SUN J J, LI Y, et al. An efficient hybrid model for nonlinear two⁃phase flow in fractured low⁃permeability reservoir[J]. Energies, 2019, 12(15): 2850. |
48 | HUANG Z Q, YAO J, WANG Y Y. An efficient numerical model for immiscible two⁃phase flow in fractured karst reservoirs[J]. Communications in Computational Physics, 2013, 13(2): 540⁃558. |
49 | LI Y, YU Q Y, JIA C X, et al. Rate transient analysis for coupling Darcy flow and free flow in bead⁃string fracture⁃caved carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107809. |
50 | ZHANG K, MA X P, LI Y L, et al. Parameter prediction of hydraulic fracture for tight reservoir based on micro⁃seismic and history matching[J]. Fractals, 2018, 26(2): 1840009. |
51 | ZHANG N, WANG Y T, SUN Q, et al. Multiscale mass transfer coupling of triple⁃continuum and discrete fractures for flow simulation in fractured vuggy porous media[J]. International Journal of Heat and Mass Transfer, 2018, 116: 484⁃495. |
52 | WANG Y Y, YAO J, HUANG Z Q. Parameter effect analysis of Non⁃Darcy flow and a method for choosing a fluid flow equation in fractured karstic carbonate reservoirs[J]. Energies, 2022, 15(10): 3623. |
53 | ZHANG N, YAO J, HUANG Z Q, et al. Accurate multiscale finite element method for numerical simulation of two⁃phase flow in fractured media using discrete⁃fracture model[J]. Journal of Computational Physics, 2013, 242: 420⁃438. |
54 | KOU J L, LU H J, WU F M, et al. Electricity resonance⁃induced fast transport of water through nanochannels[J]. Nano Letters, 2014, 14(9): 4931⁃4936. |
55 | WANG M, CHEUNG S W, CHUNG E T, et al. Generalized multiscale multicontinuum model for fractured vuggy carbonate reservoirs[J]. Journal of Computational and Applied Mathematics, 2020, 366: 112370. |
56 | SIDIQ H, AMIN R, KENNAIRD T. The study of relative permeability and residual gas saturation at high pressures and high temperatures[J]. Advances in Geo⁃Energy Research, 2017, 1(1): 64⁃68. |
57 | LI C H, LI X Z, GAO S S, et al. Experiment on gas⁃water two⁃phase seepage and inflow performance curves of gas wells in carbonate reservoirs: A case study of Longwangmiao formation and Dengying formation in Gaoshiti⁃Moxi block, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 983⁃992. |
58 | LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra⁃deep structural gas fields in China[J]. Petroleum Exploration and Development, 2018, 45(1): 118⁃126. |
59 | HU J T, YANG S L, WANG B D, et al. Effect of pore structure characteristics on gas⁃water seepage behaviour in deep carbonate gas reservoirs[J]. Geoenergy Science and Engineering, 2024: 212881. |
60 | ZHANG R H, LU G, PENG X, et al. Study on the mechanism of gas⁃water two⁃phase flow in carbonate reservoirs at pore scale[J/OL]. Petroleum. (2023⁃09⁃28) [2024⁃08⁃27]. https://doi.org/10.1016/j.petlm.2023.09.008. |
[1] | Shaohu LIU, Suonan WANG, Baolong QU, Lei ZHANG, Rui HUANG. Research Progress and Prospect of Coiled Tubing Operation Technology in Ultra⁃Deep Well [J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 54-60. |
[2] | Xinghua ZHANG, Pengbo NI, Haosheng WU, Yuan SUN, Shibin LIU, Sai YIN. Application of Formation Pressure Monitoring While Drilling Technology in Deep and Ultra⁃Deep Formation [J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 61-65. |
[3] | Jian HOU, Heng LIU, Linke LIU, Bin PAN, Yuping ZHANG. 3D Point Cloud Processing Model Based on Local Position Adaptation [J]. Journal of Liaoning Petrochemical University, 2023, 43(6): 89-96. |
[4] | Qinggong MENG, Xinyi ZHU, Chensheng CHANG, Yanhui LI, Yuhang ZHU, Yan ZHAO, Xiuping LI, Rongxiang ZHAO. Synthesis of Citric Acid Type Deep Eutectic Solvent and Its Application in Oxidative Desulfurization [J]. Journal of Liaoning Petrochemical University, 2023, 43(5): 14-19. |
[5] | Jiangxue Han, Xiaoming Guo, Yongheng Tang, Lixin Wang, Bin Pan. Cooperative Robot Object Tracking Based on Siamese Network [J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 90-96. |
[6] | Fabao Zou, Haixiang Zhang, Weixin Huo, Xi Chen, Bicheng Gan, Jiawen Li, Jiazhi Feng. Study of Hydrate Deposition Pattern in Deepwater Gas Wellbore under Intervention Operation [J]. Journal of Liaoning Petrochemical University, 2022, 42(5): 50-56. |
[7] | Yunqi Wang, Shanshan Li, Mengdie Tang, Chuang Liu, Chang Liu, Qi Fu, Zhimeng Wang, Rongxiang Zhao. Synthesis of OA⁃ZnCl2/SG Catalyst and Its Oxidative Desulfurization Performance [J]. Journal of Liaoning Petrochemical University, 2022, 42(4): 11-16. |
[8] | Wencai Tian, Weibiao Qiao, Guofeng Zhou, Wei Liu. Research on Short⁃Term Natural Gas Load Forecasting Based on Wavelet Transform and Deep Learning [J]. Journal of Liaoning Petrochemical University, 2021, 41(5): 91-96. |
[9] | Hangxuan Li, Genxiang Luo, Yun Cheng. Morphology⁃Controlled Synthesis and Characterization of Lanthanum Hydroxide in Deep Eutectic Solvents [J]. Journal of Liaoning Petrochemical University, 2021, 41(4): 22-27. |
[10] | Zhang Meiyu, Li Xiuping, Zhao Rongxiang. The Deep Eutectic Solvent of ChCl/C6H8O7 Type Removes Basic Nitrous Compounds from Simulated Oils [J]. Journal of Liaoning Petrochemical University, 2020, 40(5): 28-32. |
[11] | Qin Guoqing, Wang Weiqiang, Fan Yubin, Zhuang Zhenggang, Yu Ruizhe. Analysis of Flow Characteristics in the Pipe of Deep Sea Horizontal Pipe⁃Catenary Riser System [J]. Journal of Liaoning Petrochemical University, 2020, 40(1): 52-58. |
[12] | Du Kun,Wang Peng,Li Yang,Jiang Haiyan,Bai Yu. Study on Typical Deep Pumping Processes in Tahe Oilfield [J]. Journal of Liaoning Petrochemical University, 2019, 39(5): 45-52. |
[13] | . Removal of Sulfides from Simulated Oil by CH3CONH2/ZnCl2 Deep Eutectic Solvent [J]. Journal of Liaoning Petrochemical University, 2017, 37(5): 1-7. |
[14] |
Mao Yanhong, Wei Min, Liu Dongmei, Wang Haiyan.
Development of Deep Desulfurization Process for FCC Gasoline |
[15] |
Qian Zhongwen, Lai Xiaochen, Lai Junling, Luo Genxiang.
Synthesis of CuS by Elemental-Direct-Reaction in Deep Eutectic Solvents and Test on Photocatalytic Performance [J]. Journal of Liaoning Petrochemical University, 2016, 36(6): 10-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Liaoning Petrochemical University
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56865105 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.