1 |
GE Z Q, SONG Z H, GAO F R. Review of recent research on data⁃based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543⁃3562.
|
2 |
FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge⁃based redundancy: A survey and some new results[J]. Automatica, 1990, 26(3): 459⁃474.
|
3 |
VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K W, et al. A review of process fault detection and diagnosis: PartⅠ: Quantitative model⁃based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 293⁃311.
|
4 |
VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N. A review of process fault detection and diagnosis: PartⅡ: Qualitative models and search strategies[J]. Computers &Chemical Engineering,2003, 27(3): 313⁃326.
|
5 |
VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis(Ⅲ): process history based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 327⁃346.
|
6 |
刘强, 柴天佑, 秦泗钊, 等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6): 801⁃807.
|
|
LIU Q, CHAI T Y, QIN S Z, et al. Progress of data⁃driven and knowledge⁃driven process monitoring and fault diagnosis for industry process[J]. Control and Decision, 2010, 25(6): 801⁃807.
|
7 |
HÄSTBACKA D, KANNISTO P, VILKKO M. Data⁃driven and event⁃driven integration architecture for plant⁃wide industrial process monitoring and control[C]//IECON 2018⁃44th Annual Conference of the IEEE Industrial Electronics Society. Washington: IEEE, 2018: 2979⁃2985.
|
8 |
ALIZADEH E, KOUJOK M E, RAGAB A, et al. A data⁃driven causality analysis tool for fault diagnosis in industrial processes[J]. IFAC⁃PapersOnLine, 2018, 51(24): 147⁃152.
|
9 |
MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403⁃414.
|
10 |
RAICH A C, Çinar A. Multivariate statistical methods for monitoring continuous processes: Assessment of discrimination power of disturbance models and diagnosis of multiple disturbances[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 37⁃48.
|
11 |
RAICH A, ÇINAR A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes[J]. AIChE Journal, 1996, 42(4): 995⁃1009.
|
12 |
CHIANGLH L H, RUSSELL E L, BRAATZ R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2): 243⁃252.
|
13 |
罗林, 赵强. 加氢裂化过程软测量建模研究综述[J]. 辽宁石油化工大学学报, 2018, 38(1): 66⁃73.
|
|
LUO L, ZHAO Q. Review of soft sensor techniques for hydrocracking process[J]. Journal of Liaoning Shihua University, 2018, 38(1): 66⁃73.
|
14 |
谢磊. 间歇过程统计性能监控研究[D]. 杭州: 浙江大学, 2005.
|
15 |
李荣雨. 基于PCA的统计过程监控研究[D]. 杭州: 浙江大学, 2007.
|
16 |
葛志强. 复杂工况过程统计监测方法研究[D]. 杭州: 浙江大学, 2009.
|
17 |
CHEN J, LIAO C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277⁃289.
|
18 |
LAU C K, GHOSH K, HUSSAIN M A, et al. Fault diagnosis of tennessee eastman process with multi⁃scale PCA and ANFIS[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 120: 1⁃14.
|
19 |
THOMPSON B. Canonical correlation analysis[M]. London: Sage Publications, 1984.
|
20 |
HYVÄRINEN A, OJA E. Independent component analysis: Algorithms and applications[J]. Neural Networks, 2000, 13(4⁃5): 411⁃430.
|
21 |
YU X C, Hu D, Xu J D. Supervised learning independent component analysis algorithms and applications[M]. New York: John Wiley & Sons Itd, 2014.
|
22 |
ALBAZZAZ H, WANG X Z. Statistical process control charts for batch operations based on independent component analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6731⁃6741.
|
23 |
ZHANG Y W, MA C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1): 64⁃72.
|
24 |
SHAWE⁃TAYLOR J. Kernel methods for pattern analysis[M]. Beijing: China Machine Press, 2004.
|
25 |
王太勇, 王廷虎, 王鹏, 等. 基于注意力机制BiLSTM的设备智能故障诊断方法[J]. 天津大学学报,2020,53(6):601⁃608.
|
|
WANG T Y, WANG T H, WANG P, et al. An intelligent fault diagnosis method based on attention⁃based bidirectional LSTM network[J]. Journal of Tianjin University, 2020, 53(6): 601⁃608.
|
26 |
侯鑫烨, 董增寿, 刘鑫, 等. 基于能量熵和CL⁃LSTM的故障诊断模型[J]. 机床与液压, 2021, 49(16): 180⁃184.
|
|
HOU X Y, DONG Z S, LIU X, et al. Fault diagnosis model based on energy entropy and CL⁃LSTM[J]. Machine Tool & Hydraulics, 2021, 49(16): 180⁃184.
|
27 |
曲星宇, 曾鹏, 李俊鹏. 基于RNN⁃LSTM的磨矿系统故障诊断技术[J]. 信息与控制, 2019, 48(2): 179⁃186.
|
|
QU X Y, ZENG P, LI J P. Fault diagnosis technology of grinding system based on RNN⁃LSTM[J]. Information and Control, 2019, 48(2): 179⁃186.
|
28 |
LUO L, XIE L, SU H Y. Deep learning with tensor factorization layers for sequential fault diagnosis and industrial process monitoring[J]. IEEE Access, 2020, 8: 105494⁃105506.
|
29 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. (2014⁃12⁃22)[2022⁃11⁃25]. https://arxiv.org/abs/1412.6980.
|