1 |
张磊磊, 常莹, 黄金华, 等. 中温SOFC复合阴极材料BSCN0.6⁃30%GDC的表征[J]. 辽宁石油化工大学学报, 2014, 34(2): 4⁃8.
|
|
ZHANG L L, CHANG Y, HUANG J H, et al. Investigation of BSCN0.6⁃30%GDC composite gathode for IT⁃SOFC[J]. Journal of Liaoning Shihua University, 2014, 34(2): 4⁃8.
|
2 |
XU X, BI L, ZHAO X S. Highly⁃conductive proton⁃conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells[J]. Journal of Membrane Science, 2018, 558: 17⁃25.
|
3 |
陈茜, 金莹, 马季, 等. 无钴铁基层状钙钛矿材料作SOFC阴极的研究[J]. 石油化工高等学校学报, 2023, 36(4): 69⁃74.
|
|
CHEN Q, JIN Y, MA J, et al. Study on cobalt free iron base like perovskite as cathode of SOFC[J]. Journal of Petrochemical Universities, 2023, 36(4): 69⁃74.
|
4 |
LIU W Y, KOU H N, WANG X F, et al. Improving the performance of the Ba0.5Sr0.5Co0.8Fe0.2O3- δ cathode for proton⁃conducting SOFCs by microwave sintering[J]. Ceramics International, 2019, 45(16): 20994⁃20998.
|
5 |
DAN X, WANG C, XU X, et al. Improving the sinterability of CeO2 by using plane⁃selective nanocubes[J]. Journal of the European Ceramic Society, 2019, 39(14): 4429⁃4434.
|
6 |
迟克彬, 李方伟, 李影辉, 等. 固体氧化物燃料电池研究进展[J]. 天然气化工, 2002,27(4): 37⁃44.
|
|
CHI K B, LI F W, LI Y H, et al. Research progress of solid oxide fuel cells[J]. Natural Gas Chemical Industry, 2002, 27(4): 37⁃44.
|
7 |
郭土. 固体氧化物燃料电池电解质材料的研究进展[J]. 当代化工, 2023, 52(10): 2445⁃2448.
|
|
GUO T. Research progress in electrolytes of solid oxide fuel cells[J]. Contemporary Chemical Industry, 2023, 52(10): 2445⁃2448.
|
8 |
WEI M R, LI H Z, CHEN X Y, et al. First⁃principles study of interfacial effects toward oxygen reduction reaction of palladium/La1- xSrxCo1- yFeyO3- δ cathodes in solid oxide fuel cells[J]. Applied Surface Science, 2021, 562: 150218.
|
9 |
HU B X, KRISHNAN S, LIANG C Y, et al. Experimental and thermodynamic evaluation of La1- xSrxMnO3± δ and La1- xSrxCo1- yFeyO3- δ cathodes in Cr⁃containing humidified air[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10208⁃10216.
|
10 |
ZHANG H Z, CONG Y, YANG W S. Effect of CO2 treatment on the performance of Sm0.5Sr0.5CoO3- δ cathode electrocatalyst[J]. Chinese Journal of Catalysis, 2008, 29(1): 7⁃9.
|
11 |
CHEN J, YANG X, WAN D J, et al. Novel structured Sm0.5Sr0.5CoO3- δ cathode for intermediate and low temperature solid oxide fuel cells[J]. Electrochimica Acta, 2020, 341: 136031.
|
12 |
HWANG C S, TSAI C H, CHANG C L, et al. High power plasma sprayed intermediate temperature solid oxide fuel cells with Sm0.5Sr0.5CoO3- δ cathode[J]. Procedia Engineering, 2012, 36: 81⁃87.
|
13 |
LIN Y, RAN R, ZHENG Y, et al. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3- δ as a potential cathode for an anode⁃supported proton⁃conducting solid⁃oxide fuel cell[J]. Journal of Power Sources, 2008, 180(1): 15⁃22.
|
14 |
BELLO I T, YU N, ZHAI S, et al. Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3- δ functional material for intermediate temperature solid oxide fuel cells[J]. Ceramics International, 2022, 48(15): 21416⁃21427.
|
15 |
CHEN C H, CHANG C L, HWANG B H. Electrochemical and microstructure characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3- δ (BSCF) cathodes prepared by citrate precursor method for SOFCs[J]. Materials Chemistry and Physics, 2009, 115(1): 478⁃482.
|
16 |
梁皓, 尹泽群, 张喜文, 等. 化学链燃烧反应中LaFe1- xCoxO3载氧体的性能研究[J]. 石油炼制与化工, 2013, 44(6): 12⁃16.
|
|
LIANG H, YIN Z Q, ZHANG X W, et al. Performance study of LaFe1- xCoxO3 as oxygen carriers in chemical⁃looping combustion reaction[J]. Petroleum Processing and Petrochemicals, 2013, 44(6): 12⁃16.
|
17 |
DING D, LI X X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy & Environmental Science, 2014, 7(2): 552⁃575.
|
18 |
JIN C, LIU J. Preparation of Ba1.2Sr0.8CoO4+ δ K2NiF4⁃type structure oxide and cathodic behavioral of Ba1.2Sr0.8CoO4+ δ⁃GDC composite cathode for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2009, 474(1/2): 573⁃577.
|
19 |
LEE Y, KIM H. Electrochemical performance of La2NiO4+ δ cathode for intermediate⁃temperature solid oxide fuel cells[J]. Ceramics International, 2015, 41(4): 5984⁃5991.
|
20 |
BOEHM E, BASSAT J M, DORDOR P, et al. Oxygen diffusion and transport properties in non⁃stoichiometric Ln2- xNiO4+ δ oxides[J]. Solid State Ionics, 2005, 176(37/38): 2717⁃2725.
|
21 |
TARANCÓN A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry, 2010, 20(19): 3799⁃3813.
|
22 |
KHARTON V V, KOVALEVSKY A V, AVDEEV M, et al. Chemically induced expansion of La2NiO4+ δ⁃based materials[J]. Chemistry of Materials, 2007, 19(8): 2027⁃2033.
|
23 |
GU C Y, WU X S, CAO J F, et al. High performance Ca⁃containing La2- xCaxNiO4+ δ(0≤x≤0.75) cathode for proton⁃conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23422⁃23432.
|
24 |
CHEN Z Z, WANG J L, HUAN D M, et al. Tailoring the activity via cobalt doping of a two⁃layer Ruddlesden⁃Popper phase cathode for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2017, 371: 41⁃47.
|
25 |
LIM C, SENGODAN S, JEONG D, et al. Investigation of the Fe doping effect on the B⁃site of the layered perovskite PrBa0.8Ca0.2Co2O5+ δ for a promising cathode material of the intermediate⁃temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(2): 1088⁃1095.
|
26 |
AL‐SHAHRANI A, AL‐HAJRY A, EL‐DESOKY M M. Non⁃adiabatic small polaron hopping conduction in sodium borate tungstate glasses[J]. Physica Status Solidi (A), 2003, 200(2): 378⁃387.
|
27 |
CONG L G, HE T M, JI Y, et al. Synthesis and characterization of IT⁃electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3- δ by glycine–nitrate combustion method[J]. Journal of Alloys and Compounds, 2003, 348(1/2): 325⁃331.
|
28 |
SOLTANI N, ARCOS L H, BAHRAMI A, et al. Structural changes in NiO⁃Ce0.8Sm0.2O2- x anode under reducing atmosphere[J]. Materials Characterization, 2019, 150: 8⁃12.
|
29 |
SKINNER S J, KILNER J A. Oxygen diffusion and surface exchange in La2- xSrxNiO4+ δ[J]. Solid State Ionics, 2000, 135(1/4): 709⁃712.
|
30 |
ZENER C. Interaction between the d shells in the transition metals[J]. Physical Review, 1951, 81(3): 440⁃444.
|
31 |
ZHOU J, CHEN Y, CHEN G, et al. Evaluation of LaxSr2- xFeO4 layered perovskite as potential electrode materials for symmetrical solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2015, 647: 778⁃783.
|
32 |
SHEN Y N, ZHAO H L, XU J C, et al. Effect of Ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2- xMxNiO4+ δ (M=Ba, Sr) cathode materials[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1023⁃1029.
|
33 |
AGUADERO A, ALONSO J A, ESCUDERO M J, et al. Evaluation of the La2Ni1- xCuxO4+ δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes[J]. Solid State Ionics, 2008, 179(11/12): 393⁃400.
|
34 |
ZHANG Y X, CHEN Y, CHEN F L. In⁃situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2015, 277: 277⁃285.
|
35 |
HAN X, CHEN P P, WU M, et al. A redox⁃reversible perovskite electrode for CeO2⁃and LaGaO3⁃based symmetric solid oxide fuel cells[J]. Ceramics International, 2022,48(18): 26440⁃26451.
|
36 |
CHEN Y, CHOI Y M, YOO S, et al. A highly efficient multi⁃phase catalyst dramatically enhances the rate of oxygen reduction[J]. Joule, 2018, 2(5): 938⁃949.
|
37 |
ESCUDERO M J, FUERTE A, DAZA L. La2NiO4+ δ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell[J]. Journal of Power Sources, 2011, 196(17): 7245⁃7250.
|