1 |
STEWART W E. Predict octanes for gasoline blending[J]. Petroleum Refinery, 1956, 38(12): 135⁃139.
|
2 |
AUCKLAND M H T, CHARNOCK D J. The development of linear blending indices for petroleum properties[J]. Journal of the Institute of Petroleum, 1969, 55(545): 322⁃329.
|
3 |
RUSIN M H, CHUNG H S, MARSHALL J F. A "transformation" method for calculating the research and motor octane numbers of gasoline blends[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(3): 195⁃204.
|
4 |
MULLER A. New method produces accurate octane blending values[J]. Oil & Gas Journal, 1992, 90(12): 80⁃90.
|
5 |
HEALY W C, JR C W M, PETERSON R T. A new approach to blending octane[J]. Proc Am Inst, 1959, 39(3): 132⁃136.
|
6 |
TWU C H, COON J E. Predict octane numbers using a generalized interaction method: Clean fuels technology[J]. Hydrocarbon Processing, 1996, 75(2): 51⁃56.
|
7 |
BROWN J M, SUNDARAM A, SAEGER R B, et al. Estimating detailed compositional information from limited analytical data: US⁃8682597⁃B2[P]. 2014⁃03⁃25.
|
8 |
NEUROCK M, NIGAM A, LIBANATI C, et al. Monte carlo simulation of complex reaction systems: Molecular structure and reactivity in modelling heavy oils[J]. Chemical Engineering Science, 1990, 45(8): 2083⁃2088.
|
9 |
NEUROCK M, NIGAM A, TRAUTH D, et al. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms[J]. Chemical Engineering Science, 1994, 49(24): 4153⁃4177.
|
10 |
CAMPBELL D M, KLEIN M T. Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods[J]. Applied Catalysis A: General, 1997, 160(1): 41⁃54.
|
11 |
TRAUTH D M, STARK S M, PETTI T F, et al. Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling[J]. Energy & Fuels, 1994, 8(3): 576⁃580.
|
12 |
PAN Y B, YANG B L, ZHOU X W. Feedstock molecular reconstruction for secondary reactions of fluid catalytic cracking gasoline by maximum information entropy method[J]. Chemical Engineering Journal, 2015, 281: 945⁃952.
|
13 |
HUDEBINE D, VERSTRAETE J J. Reconstruction of petroleum feedstocks by entropy maximization. Application to FCC gasolines[J]. Oil & Gas Science and Technology, 2011, 66(3): 437⁃460.
|
14 |
ZHANG Y. A molecular approach for characterisation and property predictions of petroleum mixtures with applications to refinery modelling[D]. England: University of Manchester, 1999.
|
15 |
CUI C, ZHANG L Z, MA Y J, et al. Computer⁃aided gasoline compositional model development based on GC⁃FID analysis[J]. Energy & Fuels, 2018, 32(8): 8366⁃8373.
|
16 |
CUI C, BILLA T, ZHANG L Z, et al. Molecular representation of the petroleum gasoline fraction[J]. Energy & Fuels, 2018, 32(2): 1525⁃1533.
|
17 |
LITANI⁃BARZILAI I, SELA I, BULATOV V, et al. On⁃line remote prediction of gasoline properties by combined optical methods[J]. Analytica Chimica Acta, 1997, 339(1/2): 193⁃199.
|
18 |
史月华, 陆勇, 徐光明, 等. 主成分回归残差神经网络校正算法用于近红外光谱快速测定汽油辛烷值[J]. 分析化学, 2001, 29(1): 87⁃91.
|
|
SHI Y H, LU Y, XU G M, et al. Principal component regression residual artificial neural network calibration algorithm applied in near infrared fast measurement of gasoline octane number[J]. Chinese Journal of Analytical Chemistry, 2001, 29(1): 87⁃91.
|
19 |
KELLY J J, BARLOW C H, JINGUJI T M, et al. Prediction of gasoline octane numbers from near⁃infrared spectral features in the range 660⁃1215 nm[J]. Analytical Chemistry, 1989, 61(4): 313⁃320.
|
20 |
史永刚, 刘绍璞, 宋世远, 等. 基于支持向量机的汽油族组成近红外光谱分析方法研究[J]. 分析测试学报, 2007, 26(3): 343⁃346.
|
|
SHI Y G, LIU S P, SONG S Y, et al. Near infrared analysis of major classes of hydrocarbon constituents in gasoline with least square⁃support vector machine[J]. Journal of Instrumental Analysis, 2007, 26(3): 343⁃346.
|
21 |
刘秋芳, 褚小立, 陈瀑, 等. 基于近红外光谱快速预测石脑油单体烃分子组成[J]. 石油炼制与化工, 2022, 53(1): 86⁃92.
|
|
LIU Q F, CHU X L, CHEN B, et al. Rapid prediction of hydrocarbon molecular composition of naphtha based on near infrared spectroscopy[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 86⁃92.
|