1 |
中华人民共和国自然资源部. 中国矿产资源报告2022[R]. 北京: 地质出版社, 2022.
|
2 |
上海艾瑞市场咨询有限公司. 中国新能源汽车行业白皮书[R]. 上海:[s.n.], 2020.
|
3 |
史丹, 李鹏. “双碳”目标下工业碳排放结构模拟与政策冲击[J]. 改革, 2021(12): 30⁃44.
|
4 |
International Energy Agency. Global EV outlook 2022, securing supplies for an electric future[R]. Paris: IEA, 2022.
|
5 |
United States Geological Survey. Mineral commodity summaries 2023[R]. Reston: [s.n.], 2023.
|
6 |
Xu S, Song J, Bi Q, et al. Extraction of lithium from chinese salt⁃lake brines by membranes: Design and practice [J]. Journal of Membrane Science, 2021, 635: 119441.
|
7 |
王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905⁃2921.
|
8 |
马珍. 盐湖锂资源高效分离提取技术研究进展[J]. 无机盐工业, 2022, 54(10):22⁃29.
|
9 |
乜贞, 伍倩, 丁涛, 等. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10):1⁃12.
|
10 |
苏慧. 多组分协同溶剂萃取体系应用于高镁盐湖卤水提锂的研究[D].北京:中国科学院大学 (中国科学院过程工程研究所), 2021.
|
11 |
丁涛, 郑绵平, 张雪飞, 等. 盐湖卤水提锂技术及产业化发展[J]. 科技导报, 2020, 38(15): 16⁃23.
|
12 |
于建国, 孙庆, 裘晟波, 等. 支撑国家新能源战略发展的锂资源开发[J]. 无机盐工业, 2023, 55(1):1⁃14.
|
13 |
石成龙. 离子液体体系用于盐湖卤水中提取锂的研究[D].西宁:中国科学院大学 (中国科学院青海盐湖研究所), 2017.
|
14 |
丁涛, 郑绵平, 彭苏萍, 等. 盐湖提锂工艺——高镁锂比盐湖锂盐吸附剂研发进展[J]. 科技导报, 2020, 38(14): 94⁃101.
|
15 |
Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review[J]. Desalination, 2012, 287: 190⁃199.
|
16 |
齐云龙. 抗硅垢反渗透复合膜制备研究[D].天津:天津大学, 2020.
|
17 |
Liang Y Z, Zhu Y Z, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub⁃nanometre pores for sub⁃1 Å precision separation[J]. Nature Communications, 2020, 11(1): 2015.
|
18 |
Cheng Y, Dong Y, Huang Q, et al. Ionic transport and sieving properties of sub⁃nanoporous polymer membranes with tunable channel size[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 9015⁃9026.
|
19 |
Li X, Mo Y, Qing W, et al. Membrane⁃based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science, 2019, 591: 117317.
|
20 |
Nishizawa M, Menon V P, Martin C R. Metal nanotubule membranes with electrochemically switchable ion⁃transport selectivity[J]. Science, 1995, 268(5211): 700⁃702.
|
21 |
Tagliazucchi M, Peleg O, Kröger M, et al. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex[J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3363⁃3368.
|
22 |
Diercks C S, Yaghi O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585.
|
23 |
Bing S, Xian W, Chen S, et al. Bio⁃inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction[J]. Matter, 2021, 4(6): 2027⁃2038.
|
24 |
Ruan X, Zhang C, Zhu Y, et al. Constructing mechanical shuttles in a three⁃dimensional (3D) porous architecture for selective transport of lithium ions[J]. Angewandte Chemie, 2023, 135(7): e202216549.
|
25 |
Sheng F, Wu B, Li X, et al. Efficient ion sieving in covalent organic framework membranes with sub⁃2⁃nanometer channels[J]. Advanced Materials, 2021, 33(44): 2104404.
|
26 |
Peng H, Zhao Q. A nano‐heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31(14): 2009430.
|
27 |
Wang W, Hong G, Zhang Y, et al. Designing an energy⁃efficient multi⁃stage selective electrodialysis process based on high⁃performance materials for lithium extraction[J]. Journal of Membrane Science, 2023, 675: 121534.
|
28 |
Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682⁃686.
|
29 |
Zhao Y, Wang H, Li Y, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J]. Desalination, 2020, 493: 114620.
|
30 |
赵培侠. 基于Zr⁃MOFs复合纳滤膜的构筑及分离性能研究[D].郑州:郑州大学, 2021.
|