1 |
Islam A B M,Soeb M R,Jumaat M Z.Floating spar platform as an ultra⁃deep water structure in oil and gas exploration[J]. Ships & Offshore Structures,2017,12(7):923⁃936.
|
2 |
Kark S,Brokovich E,Mazor T,et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation[J]. Conservation Biology,2015,29(6):1573⁃1585.
|
3 |
Lelchat F,Dussauze M,Lemaire P,et al.Measuring the biological impact of drilling waste on the deep seafloor:An experimental challenge[J].Journal of Hazardous Materials,2020,389:122132.
|
4 |
Johanne V,Georgios K,Lea⁃Anne H,et al.Potential impacts of offshore oil and gas activities on deep⁃sea sponges and the habitats they form[J].Advances in Marine Biology,2018,79:33⁃60.
|
5 |
胡文瑞,鲍敬伟.石油行业发展趋势及中国对策研究[J].中国石油大学学报(自然科学版),2018,42(4):1⁃10.
|
6 |
Su A,Chen H H,Chen X,et al.New insight into origin, accumulation and escape of natural gas in the Songdong and Baodao regions in the eastern Qiongdongnan basin, South China Sea[J].Journal of Natural Gas Science and Engineering,2018,52:467⁃483.
|
7 |
王龙,谢晓军,刘世翔,等.南海南部主要盆地油气分布规律及主控因素[J].天然气地球科学,2017,28(10):1546⁃1554.
|
8 |
Deng P C,L Z Y,Li X G,et al. Vertical galvanic corrosion of pipeline steel in simulated marine thermocline[J].Ocean Engineering,2020,217:107584.
|
9 |
Liu Z G,Gao X H,Du L X et al.Hydrogen assisted cracking and CO2 corrosion behaviors of low⁃alloy steel with high strength used for armor layer of flexible pipe[J].Applied Surface Science,2018,440(1):974⁃991.
|
10 |
Sun F L,Ren S,Li Z,et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments[J]. Materials Science & Engineering A,2017,685:145⁃153.
|
11 |
Yang Z X,Kan B,Li J X,et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep⁃sea environment[J].Journal of Electroanalytical Chemistry,2018,822:123⁃133.
|
12 |
Yang Z X,Kan B,Li J X,et al.Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep⁃sea environment[J]. International Journal of Hydrogen Energy,2017,42(44):27446⁃27457.
|
13 |
Wang W,Wang H L,Zhao J,et al. Self⁃healing performance and corrosion resistance of graphene oxide⁃mesoporous silicon layer⁃nanosphere structure coating under marine alternating hydrostatic pressure[J].Chemical Engineering Journal,2019,361:792⁃804.
|
14 |
吴明,孟向楠,陈旭,等.X100管线钢在不同温度和静水压力作用下的剩余寿命预测[J].材料科学与工程学报,2016,34(6):951⁃954.
|
15 |
Castaneda H,Benetton X D. SRB⁃biofilm influence in active corrosion sites formed at the steel⁃electrolyte interface when exposed to artificial seawater conditions[J].Corrosion Science,2008,50(4):1169⁃1183.
|
16 |
Xie F,Wang X F,Wang D,et al.Effect of strain rate and sulfate reducing bacteria on stress corrosion cracking behaviour of X70 pipeline steel in simulated sea mud solution[J].Engineering Failure Analysis,2019,100:245⁃258.
|
17 |
Mu J,Li Y Z,Wang X.Crevice corrosion behavior of X70 steel in NaCl solution with different pH[J].Corrosion Science,2021,182:109310.
|
18 |
高海平,张海兵,傅晓蕾,等.海水pH对两种船体钢腐蚀行为的影响[J].腐蚀与防护,2014,35(5):473⁃476.
|
19 |
林俊辉,淡振华,陆嘉飞,等.深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望[J].稀有金属材料与工程,2020,49(3):1090⁃1099.
|
20 |
Wei B X,Xu J,Fu Q,et al. Effect of sulfate⁃reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution[J]. Journal of Materials Science & Technology,2021,87:1⁃17.
|
21 |
Chen L J,Wei B,Xu X H. Effect of sulfate⁃reducing bacteria (SRB) on the corrosion of buried pipe steel in acidic soil solution[J]. Coatings,2021,11(6):625.
|
22 |
Gu T Y,Jia R,Unsal T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J]. Journal of Materials Science & Technology,2019,35(4):631⁃636.
|
23 |
Ramel F,Amrani A,Pieulle L,et al. Membrane⁃bound oxygen reductases of the anaerobic sulfate⁃reducing Desulfovibrio vulgaris Hildenborough:Roles in oxygen defence and electron link with periplasmic hydrogen oxidation[J].Microbiology,2013,159(12):2663⁃2673.
|
24 |
陈亚文.富集培养条件下水口水库和象山港海域水体硫酸盐还原细菌的耐氧性特征[D].杭州:浙江大学,2019.
|
25 |
宋光铃,曹楚南,林海潮.电化学控制条件下不可逆电极过程交流阻抗的统一换算电路和电化学参数解析[J].中国腐蚀与防护学报,1994,14(2):113⁃122.
|
26 |
Gao M,Pang X,Gao K.The growth mechanism of CO2 corrosion product films[J].Corrosion Science,2011,53(2):557⁃568.
|
27 |
Meeusen M,Zardet L,Homborg A M,et al. The effect of time evolution and timing of the electrochemical data recording of corrosion inhibitor protection of hot⁃dip galvanized steel[J]. Corrosion Science,2020,173:108780.
|
28 |
Cai C,Zhang Z,Wei Z L,et al. Electrochemical and corrosion behaviors of pure Mg in neutral 1.0% NaCl solution[J]. Transactions of Nonferrous Metals Society of China,2012,22(4):970⁃976.
|
29 |
谢飞,吴明,陈旭,等.SO 4 2 - 对X80管线钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J].中南大学学报(自然科学版),2013,44(1):424⁃430.
|
30 |
刘玉,李焰,李强.阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J].金属学报,2013,49(9):1089⁃1097.
|
31 |
Sun D X,Ming W,Fei X.Effect of sulfate⁃reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea⁃mud simulated solution[J].Materials Science and Engineering A,2018,721:135144.
|
32 |
Wu T Q,Yan M C,Yu L B,et al.Stress corrosion of pipeline steel under disbonded coating in a SRB⁃containing environment[J].Corrosion Science,2019,157:518⁃530.
|
33 |
李付绍,安茂忠,刘光洲,等.硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用[J].无机化学学报,2009,25(1):13⁃18.
|
34 |
李昊宸,谢飞,齐季,等.温度和硫酸盐还原菌(SRB)协同作用下X80钢的腐蚀行为[J].钢铁研究学报,2020,32(10):900⁃908.
|
35 |
吴明,宗月,谢飞,等.海洋硫酸盐还原菌对X100钢腐蚀行为的影响[J].材料科学与工程学报,2017,35(6):897⁃901.
|
36 |
Yang Z X,Kan Bo,Li J X,et al.A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel[J].Materials,2017,10(11):1307.
|