1 |
赵晨辰, 何向明, 王莉, 等.电化学还原CO2阴极材料研究进展[J]. 化工进展, 2013, 32(2): 373⁃380.
|
2 |
Spinner N S, Vega J A, Mustain W E. Recent progress in the electrochemical conversion and utilization of CO2[J]. Catalysis Science & Technology, 2012, 2(1): 19⁃28.
|
3 |
Sun Z Y, Ma T, Tao H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two⁃dimensional materials[J]. Chem, 2017, 3(4): 560⁃587.
|
4 |
Wang Y X, Niu C L, Wang D W. Metallic nanocatalysts for electrochemical CO2 reduction in aqueous solutions[J]. Journal of Colloid and Interface Science, 2018, 527: 95⁃106.
|
5 |
Schlögl R. Heterogeneous catalysis[J]. Angewandte Chemie International Edition, 2015, 54(11): 3465⁃3520.
|
6 |
张现萍, 黄海燕, 靳红利, 等.水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015, 34(12): 4139⁃4144.
|
7 |
Yang W F, Dastafkan K, Jia C, et al. Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions[J]. Advanced Materials Technologies, 2018, 3(9): 1700377.
|
8 |
Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science, 2013, 6(6): 1711⁃1731.
|
9 |
Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050⁃7059.
|
10 |
Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(8): 2309⁃2326.
|
11 |
Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma⁃activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123.
|
12 |
Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper⁃indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015, 54(7): 2146⁃2150.
|
13 |
Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low⁃overpotential CO2 reduction[J]. Nano Letters, 2015, 15(10): 6829⁃6835.
|
14 |
Xie M S, Xia B Y, Li Y W, et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons[J]. Energy & Environmental Science, 2016, 9(5): 1687⁃1695.
|
15 |
Chen C S, Handoko A D, Wan J H, et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals[J]. Catalysis Science & Technology, 2015, 5(1): 161⁃168.
|
16 |
Ma M, Djanashvili K, Smith W A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays[J]. Angewandte Chemie International Edition, 2016, 55(23): 6680⁃6684.
|
17 |
Tang W, Peterson A A, Varela A S, et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction[J]. Physical Chemistry Chemical Physics, 2012, 14(1): 76⁃81.
|
18 |
Manthiram K, Beberwyck B J, Alivisatos A P. Enhanced electrochemical methanation of carbon dioxide with a dlispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society, 2014, 136(38): 13319⁃13325.
|
19 |
Qiu Y L, Zhong H X, Zhang T T, et al. Copper electrode fabricated via pulse electrodeposition: Toward high methane selectivity and activity for CO2 electroreduction[J]. ACS Catalysis, 2017, 7(9): 6302⁃6310.
|
20 |
Reske R, Mistry H, Behafarid F, et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(19): 6978⁃6986.
|
21 |
Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angewandte Chemie, 2016, 128(19): 5883⁃5886.
|
22 |
Roberts F S, Kuhl K P, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie International Edition, 2015, 54(17): 5179⁃5182.
|
23 |
Choi C, Cheng T, Flores Espinosa M, et al. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials[J]. Advanced Materials, 2019, 31(6): 1805405.
|
24 |
Reller C, Krause R, Volkova E, et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density[J]. Advanced Energy Materials, 2017, 7(12): 1602114.
|
25 |
Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams[J]. ACS Catalysis, 2014, 4(9): 3091⁃3095.
|
26 |
Chung J, Won D H, Koh J, et al. Hierarchical Cu pillar electrodes for electrochemical CO2 reduction to formic acid with low overpotential[J]. Physical Chemistry Chemical Physics, 2016, 18(8): 6252⁃6258.
|
27 |
Kim D, Kley C S, Li Y, et al. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products[J]. Proceedings of the National Academy of Sciences, 2017, 114(40): 10560⁃10565.
|
28 |
Lv J J, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018, 30(49): 1803111.
|
29 |
Weng Z, Jiang J B, Wu Y S, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution[J]. Journal of the American Chemical Society, 2016, 138(26): 8076⁃8079.
|
30 |
Lysgaard S, Mýrdal J S G, Hansen H A, et al. A DFT⁃based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction[J]. Physical Chemistry Chemical Physics, 2015, 17(42): 28270⁃28276.
|
31 |
Zhu W J, Zhang L, Yang P P, et al. Morphological and compositional design of Pd⁃Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction[J]. Small, 2018, 14(7): 1703314.
|
32 |
Hoang T T H, Verma S, Ma S, et al. Nano porous copper⁃silver alloys by additive⁃controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J]. Journal of the American Chemical Society, 2018, 140(17): 5791⁃5797.
|
33 |
Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu⁃Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2016, 139(1): 47⁃50.
|
34 |
Zhuang T T, Liang Z Q, Seifitokaldani A, et al. Steering post⁃C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi⁃carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421⁃428.
|
35 |
Chang Z Y, Huo S J, Zhang W, et al. The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction[J]. The Journal of Physical Chemistry C, 2017, 121(21): 11368⁃11379.
|
36 |
Ren D, Ang B S H, Yeo B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol onoxidederived CuxZn catalysts[J]. ACS Catalysis, 2016, 6(12): 8239⁃8247.
|
37 |
Li Q, Fu J J, Zhu W L, et al. Tuning Sn⁃catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. Journal of the American Chemical Society, 2017, 139(12): 4290⁃4293.
|
38 |
Hu H J, Wang Y T, Du N, et al. Thermal treatment induced Cu⁃Sn core/shell nanowire array catalysts for highly efficient CO2 electroreduction[J]. ChemElectroChem, 2018, 5(24): 3854⁃3858.
|
39 |
Hou Y H, Erni R, Widmer R, et al. Synthesis and characterization of degradation⁃resistant Cu@CuPd nanowire catalysts for the efficient production of formate and CO from CO2[J]. ChemElectroChem, 2019, 6(12): 3189⁃3198.
|
40 |
Yang H, Hu Y W, Chen J J, et al. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu⁃based electrocatalysts for CO production[J]. Advanced Energy Materials, 2019, 9(27): 1901396.
|
41 |
Yin Z, Gao D F, Yao S Y, et al. Highly selective palladium⁃copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO[J]. Nano Energy, 2016, 27: 35⁃43.
|
42 |
Dai C C, Sun L B, Song J J, et al. Selective electroreduction of carbon dioxide to formic acid on cobalt⁃decorated copper thin films[J]. Small Methods, 2019, 3(11): 1900362.
|
43 |
Le M, Ren M, Zhang Z, et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces[J]. Journal of the Electrochemical Society, 2011, 158(5): 45⁃49.
|
44 |
Li C W, Ciston J, Kanan M W. Electroreduction of carbon monoxide to liquid fuel on oxide⁃derived nanocrystalline copper[J]. Nature, 2014, 508(7497): 504⁃507.
|
45 |
Gu Z X, Yang N, Han P, et al. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4[J]. Small Methods, 2019, 3(2): 1800449.
|
46 |
Zhu Q G, Sun X F, Yang D X, et al. Carbon dioxide electroreduction to C2 products over copper⁃cuprous oxide derived from electrosynthesized copper complex[J]. Nature Communications, 2019, 10(1): 3851.
|
47 |
Ren D, Deng Y, Handoko A D, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts[J]. ACS Catalysis, 2015, 5(5): 2814⁃2821.
|
48 |
Sarfraz S, Garcia⁃Esparza A T, Jedidi A, et al. Cu⁃Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO[J]. ACS Catalysis, 2016, 6(5): 2842⁃2851.
|
49 |
Kas R, Kortlever R, Milbrat A, et al. Electrochemical CO2 reduction on Cu2O⁃derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons[J]. Physical Chemistry Chemical Physics, 2014, 16(24): 12194⁃12201.
|
50 |
Wang S B, Wang X C. Multifunctional metal⁃organic frameworks for photocatalysis[J]. Small, 2015, 11(26): 3097⁃3112.
|
51 |
Qiu Y L, Zhong H X, Zhang T T, et al. Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2480⁃2489.
|
52 |
Tan X Y, Yu C, Zhao C T, et al. Restructuring of Cu2O to Cu2O@Cu⁃metal–organic frameworks for selective electrochemical reduction of CO2[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9904⁃9910.
|
53 |
Qiu Y L, Zhong H X, Xu W B, et al. Tuning the electrocatalytic properties of a Cu electrode with organic additives containing amine group for CO2 reduction[J]. Journal of Materials Chemistry A, 2019, 7(10): 5453⁃5462.
|
54 |
Liu H, Xiang K S, Liu Y C, et al. Polydopamine functionalized Cu nanowires for enhanced CO2 electroreduction towards methane[J]. ChemElectroChem, 2018, 5(24): 3991⁃3999.
|