1 |
Mukherjee S, Thilagar P. Recent advances in purely organic phosphorescent materials[J]. Chemical Communications, 2015, 51(55): 10988⁃11003.
|
2 |
Hirata S. Recent advances in materials with room‐temperature phosphorescence: Photophysics for triplet exciton stabilization[J]. Advanced Optical Materials, 2017, 5(17): 1700116.
|
3 |
Xu S, Chen R, Zheng C. Excited state modulation for organic afterglow: Materials and applications[J]. Advanced Materials, 2016, 28(45): 9920⁃9940.
|
4 |
Ryota K, Naoto N, Kou Y, et al. Afterglow organic light⁃emitting diode[J]. Advanced Materials, 2016, 28(4):655⁃660.
|
5 |
Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens[J]. Nature Communications, 2018, 9(1): 840.
|
6 |
Yang J, Gao X, Xie Z, et al. Elucidating the excited state of mechanoluminescence in organic luminogens with room⁃temperature phosphorescence[J]. Angewandte Chemie International Edition, 2017, 129(48): 15501⁃15505.
|
7 |
Chai Z F, Wang C, Wang J F, et al. Abnormal room temperature phosphorescence of purely organic boron⁃containing compounds: The relationship between the emissive behavior and the molecular packing, and the potential related applications[J]. Chemical Science, 2017, 8(12): 8336⁃8344.
|
8 |
Xie Y J, Ge Y W, Peng Q, et al. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations[J]. Advanced Materials, 2017, 29(17): 1606829.
|
9 |
Xie Y J, Li Z. Thermally activated delayed fluorescent polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(4): 575⁃584.
|
10 |
Fang X Y, Yan D P. White⁃light emission and tunable room temperature phosphorescence of dibenzothiophene[J]. Science China Chemistry, 2018, 61(4): 397⁃401.
|
11 |
Li K X, Zhao L F, Gong Y Y,et al. A gelable pure organic luminogen with fluorescence⁃phosphorescence dual emission[J]. Science China Chemistry, 2017, 60(6): 136⁃142.
|
12 |
Kimura T, Watanabe S, Sawada S I, et al. Preparation and optical properties of polyimide films linked with porphyrinato Pd (II) and Pt (II) complexes through a triazine ring and application toward oxygen sensors[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(6): 1086⁃1094.
|
13 |
Liu H C, Gao Y, Cao J G, et al. Efficient room⁃temperature phosphorescence based on pure organic sulfur⁃containing heterocycle: Folding⁃induced spin⁃orbit coupling enhancement[J]. Materials Chemistry Frontiers, 2018, 2(10): 1853⁃1858.
|
14 |
Tao S Y, Lu S Y, Geng Y J, et al. Design of metal⁃free polymer carbon dots: A new class of room⁃temperature phosphorescent materials[J]. Angewandte Chemie International Edition, 2018, 57(9): 2393⁃2398.
|
15 |
Ma X, Xu C, Wang J, et al. Amorphous pure organic polymers for heavy⁃atom⁃free efficient room⁃temperature phosphorescence emission[J]. Angewandte Chemie International Edition, 2018, 130(34): 10854⁃10858.
|
16 |
Kautsky H. Energie⁃umwandlungen an grenzflächen, VIII. mitteil.: H. Kautsky, A. Hirsch und W. Flesch: Die bedeutung metastabiler zustände für sensibilisierte photo⁃oxydationen[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1935, 68(1): 152⁃162.
|
17 |
Lewis G N, Kasha M. Phosphorescence and the triplet state[J]. Journal of the American Chemical Society, 1944, 66(12): 2100⁃2116.
|
18 |
Seybold P G, White W. Room temperature phosphorescence analysis. Use of the external heavy⁃atom effect[J]. Analytical Chemistry, 1975, 47(7): 1199⁃1200.
|
19 |
Winnik M A, Lemire A, Saunders D S, et al. Phosphorescence of substituted benzophenones in solution. Probes for the conformation of hydrocarbon chains in polar and proticsolvents[J]. Journal of the American Chemical Society, 1976, 98(7): 2000⁃2002.
|
20 |
Winnik M A, Basu S N, Lee C K, et al. Phosphorescence of substituted benzophenones in solution. A probe of hydrocarbon chain conformation in three nonpolar solvents[J]. Journal of the American Chemical Society, 1976, 98(10): 2928⁃2935.
|
21 |
Schulman E M, Parker R T. Room temperature phosphorescence of organic compounds. The effects of moisture, oxygen, and the nature of the support⁃phosphor interaction[J]. The Journal of Physical Chemistry, 1977, 81(20): 1932⁃1939.
|
22 |
Boduszynski M M, Hurtubise R J, Allen T W. Liquid chromatography/field ionization mass spectrometry in the analysis of high⁃boiling and nondistillable coal liquids for hydrocarbons[J]. Analytical Chemistry, 1983, 55(2): 225⁃231.
|
23 |
Saviotti M L, Galley W C. Room temperature phosphorescence and the dynamic aspects of protein structure[J]. Proceedings of the National Academy of Sciences, 1974, 71(10): 4154⁃4158.
|
24 |
Kalyanasundaram K, Grieser F, Thomas J K. Room temperature phosphorescence of aromatic hydrocarbons in aqueous micellar solutions[J]. Chemical Physics Letters, 1977, 51(3): 501⁃505.
|
25 |
Scypinski S, Love L J C. Room temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins[J]. Analytical Chemistry, 1984, 56(3): 322⁃327.
|
26 |
Itoh T. The evidence showing that the intersystem crossing yield of benzaldehydevapour is unity[J]. Chemical Physics Letters, 1988, 151(1⁃2): 166⁃168.
|
27 |
Yuan W Z, Shen X Y, Zhao H. Crystallization⁃induced phosphorescence of pure organic luminogens at room temperature[J]. Journal of Physical Chemistry C, 2010, 114(13): 6090⁃6099.
|
28 |
Gong Y Y, Tan Y Q, Mei J, et al. Room temperature phosphorescence from natural products: Crystallization matters[J]. Science China Chemistry, 2013,56(9): 1178⁃1182.
|
29 |
Gong Y Y, Chen G, Peng Q,et al. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens[J]. Advanced Materials, 2015, 27(40):6195⁃6201.
|
30 |
Gong Y Y, Zhao L, Peng Q,et al. Crystallization⁃induced dual emission from metal⁃ and heavy atom⁃free aromatic acids and esters[J]. Chemical Science, 2015, 6(8): 4438⁃4444.
|
31 |
Li J, Jiang Y, Cheng J. Tuning the singlet⁃triplet energy gap of AIE luminogens: Crystallization⁃induced room temperature phosphorescence and delay fluorescence, tunable temperature response, highly efficient non⁃doped organic light⁃emitting diodes[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(2): 1134⁃1141.
|
32 |
唐亮亮. 具有刺激响应行为的有机材料合成与性质研究[D]. 青岛:青岛科技大学, 2019.
|
33 |
Gong Y Y, Zhao L, Peng Q. Crystallization⁃induced dual emission from metal⁃ and heavy atom⁃free aromatic acids and esters[J]. Chemical Science, 2015, 6(8): 4438⁃4444.
|
34 |
Xue P C. Luminescence switching of a persistent room⁃temperature phosphorescent pure organic molecule in response to external stimuli[J]. Chemical Communications, 2015, 51(52): 10381⁃10384.
|
35 |
张振振. 基于咔唑的纯有机室温磷光材料的设计合成及光学性质研究[D]. 青岛:青岛科技大学,2019.
|
36 |
Bolton O, Lee K, Kim H J, et al. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nature Chemistry, 2011, 3(3): 207⁃212.
|
37 |
Gao H Y, Shen Q J, Zhao X R, et al. Phosphorescent co⁃crystal assembled by 1,4⁃diiodotetrafluorobenzene with carbazole based on C–I···π halogen bonding[J]. Journal of Materials Chemistry, 2012, 22(12): 5336.
|
38 |
Pang X, Wang H, Zhao X R, et al. Co⁃crystallization turned on the phosphorescence of phenanthrene by C-Br···π halogen bonding, π⁃hole···π bonding and other assisting interactions[J]. CrystEngComm, 2013, 15(14): 2722⁃2730.
|
39 |
Gan N, Shi H F, An Z F, et al. Recent advances in polymer‐based metal‐free room‐temperature phosphorescent materials[J]. Advanced Functional Materials, 2018, 28(51): 1802657.
|
40 |
Wu W B, Tang R L, Li Q Q, et al. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties[J]. Chemical Society Reviews, 2015, 44(12): 3997⁃4022.
|
41 |
Min S K, Lee D, Seo S, et al. Tailoring intermolecular interactions for efficient room⁃temperature phosphorescence from purely organic materials in amorphous polymer matrices[J]. Angewandte Chemie, 2014, 126(42): 11177⁃11181.
|
42 |
Su Y, Phua S Z F, Li Y B, et al. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption[J]. Science Advances, 2018, 4(5): eaas9732.
|
43 |
Jinnai K, Kabe R, Adachi C. Wide⁃Range tuning and enhancement of organic long⁃persistent luminescence using emitter dopants[J]. Advanced Materials, 2018, 30(38): 1800365.
|
44 |
Zhang G Q, Chen J B, Sarah J P, et al. Multi⁃emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen⁃sensitive room⁃temperature phosphorescence[J]. Journal of the American Chemical Society, 2007, 129(29): 8942⁃8943.
|
45 |
DeRosa C A, Kerr C, Fan Z, et al. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23633⁃23643.
|
46 |
Chen H, Yao X Y, Ma X, et al. Amorphous, efficient, room⁃temperature phosphorescent metal⁃free polymers and their applications as encryption ink[J]. Advanced Optical Materials, 2016, 4(9): 1397⁃1401.
|
47 |
Zhou C, Xie T Q, Zhou R, et al. Waterborne polyurethanes with tunable fluorescence and room⁃temperature phosphorescence[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17209⁃17216.
|