Journal of Liaoning Petrochemical University

Journal of Liaoning Petrochemical University ›› 2017, Vol. 37 ›› Issue (2): 60-65.DOI: 10.3969/j.issn.1672-6952.2017.02.013

Previous Articles     Next Articles

Power Grid Fault Forecast Based on Model Prediction Method

Xue Hanlei,Liu Xiaoqin   

  1. School of Information and Control Engineering,Liaoning Shihua University,Fushun Liaoning 113001,China
  • Received:2016-08-04 Revised:2016-10-09 Published:2017-04-20 Online:2017-05-04

基于模型预测方法的电网故障预测

薛涵磊,刘晓琴   

  1. 辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
  • 通讯作者: 刘晓琴(1975-),女,硕士,副教授,从事故障诊断研究;E-mail:qinbuluoge@163.com
  • 作者简介:薛涵磊(1994-),男,本科生,电气工程及自动化专业,从事电网故障诊断研究;E-mail:1030443857@qq.com
  • 基金资助:
    国家自然科学基金青年项目(51305192);2015年国家级大学生创新创业项目(201510148065)。

Abstract:

      Power grid is diagnosed after a failure to prevent the fault occurred by inferring the information that the fault generated.The method of model prediction (MP) and abductive reasoning network(ARN) is proposed to forecast the power system fault. MP predicted the troublefree operation data of the power grid by using historical data, and compared with the actual grid runtime data, the difference was calculated and used as the input of fault diagnosis system. ARN was used to bulid the fault diagnosis system and solve the complicated relationships between data processing and the corresponding candidate fault section. The fault location can be found before protection device and circuit breaker by combining the method of MP and ARN. The test results showed that the model prediction method can quickly and accurately diagnose the fault compared with BP neural network method.

Key words: Model prediction,    , Abductive reasoning networks,    , Fault prediction,    , Candidate fault,    , Fault  , location

摘要:         电网诊断通常都是故障发生后,根据故障后产生的信息来推断故障。为了能在故障发生前进行预防,提出模型预测(ModelPrediction,MP)和溯因推理网络(AbductiveReasoningNetwork,ARN)方法预测电网故障。模型预测利用电力系统中历史数据来预测电网无故障运行时的数据,与电网实际运行时的数据作对比,计算差值,差值作为诊断系统的输入;溯因推理网络能够处理预测数据和相应的候选故障之间的复杂关系,被用来构建故障诊断系统。模型预测和溯因推理网络方法相结合,能在保护装置和断路器动作前进行故障定位,具有故障预警功能。仿真结果表明,溯因推理方法构成的预测系统比神经网络方法构成的预测系统诊断结果更快、更准确。

关键词: 模型预测,    , 溯因推理网络,    , 故障预测,   ,  候选故障,   ,  故障定位

Cite this article

Xue Hanlei,Liu Xiaoqin. Power Grid Fault Forecast Based on Model Prediction Method[J]. Journal of Liaoning Petrochemical University, 2017, 37(2): 60-65.

薛涵磊,刘晓琴. 基于模型预测方法的电网故障预测[J]. 辽宁石油化工大学学报, 2017, 37(2): 60-65.