| [1] |
BECHER P. Emulsion: Theory and practice[M]. Beijing: Science Press, 1978.
|
| [2] |
KILPATRICK P K. Water⁃in⁃crude oil emulsion stabilization: Review and unanswered questions[J]. Energy & Fuels, 2012, 26(7): 4017⁃4026.
|
| [3] |
UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water⁃in⁃crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673⁃690.
|
| [4] |
王凯,陈彦霖, 王跃社, 等. 基于油水流动特性的输油管线积液规律研究[J]. 工程热物理学报, 2015, 36(6): 1257⁃1261.
|
|
WANG K,CHEN Y L, WANG Y S, et al. Investigation on liquid accumulation in oil pipeline based on the properties of oil⁃water two⁃phase flow[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1257⁃1261.
|
| [5] |
李明远, 吴肇亮. 石油乳状液[M]. 北京: 科学出版社, 2009.
|
| [6] |
李思. 油包水乳状液蜡分子扩散规律研究[D]. 北京: 中国石油大学(北京), 2016.
|
| [7] |
KARABELAS A J. Droplet size distributions in turbulent liquid⁃liquid dispersions[J]. Chemical Engineering Science, 2018, 192: 110⁃122.
|
| [8] |
温江波, 罗海军, 梁文龙, 等. 原油⁃水混合体系黏度特性及预测方法研究进展[J]. 科学技术与工程, 2021, 21(25): 10543⁃10551.
|
|
WEN J B, LUO H J, LIANG W L, et al. Progress in viscosity characteristics and prediction methods of crude oil⁃water mixed system[J]. Science Technology and Engineering, 2021, 21(25): 10543⁃10551.
|
| [9] |
TAMBE D E, SHARMA M M. Factors controlling the stability of colloid⁃stabilized emulsions: Ⅲ. Measurement of the rheological properties of colloid⁃laden interfaces[J]. Journal of Colloid and Interface Science, 1995, 171(2): 456⁃462.
|
| [10] |
SUN G Y, ZHANG J J, MA C B, et al. Start⁃up flow behavior of pipelines transporting waxy crude oil emulsion[J]. Journal of Petroleum Science and Engineering, 2016, 147: 746⁃755.
|
| [11] |
DE OLIVEIRA C Z, SOUZA W J, SANTANA C F, et al. Rheological properties of water⁃in⁃Brazilian crude oil emulsions: Effect of water content, salinity, and pH[J]. Energy & Fuels, 2018, 32(8): 8880⁃8890.
|
| [12] |
高新华, 夏世钦, 梁洁, 等. 铁基催化剂活性相调控及其催化CO2加氢制线性 α ⁃烯烃研究进展[J]. 低碳化学与化工, 2023, 48(5): 1⁃8.
|
|
GAO X H,XIA S Q,LIANG J,et al.Research progress on active phases regulation of iron⁃based catalysts and their CO2 catalytic hydrogenation to linear α⁃olefins[J]. Low⁃Carbon Chemistry and Chemical Engineering,2023, 48(5): 1⁃8.
|
| [13] |
MA Q L, WANG W, LIU Y, et al. Wax adsorption at paraffin oil⁃water interface stabilized by Span 80[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2017, 518(5): 73⁃79.
|
| [14] |
MOLINA V. D, ARIZA LEÓN E, CHAVES⁃GUERRERO A. Understanding the effect of chemical structure of asphaltenes on wax crystallization of crude oils from Colorado oil field[J]. Energy & Fuels, 2017, 31(9): 8997⁃9005.
|
| [15] |
SUN G Y, SHENG F J, LI Q Y, et al. Rheological properties and coalescence stability of degassed crude oil emulsion: Influence of supercritical CO₂ treatment[J]. Journal of CO₂ Utilization, 2025, 86: 102537.
|
| [16] |
JIANG J Z, LI H X, GU Y. CO₂⁃switchable emulsions with controllable size and viscosity[J]. Chemical Science, 2023, 14(12): 3370⁃3376.
|
| [17] |
LU T, LI Z M, GU Z H, et al. Stability and enhanced oil recovery performance of CO2 in water emulsion: Experimental and molecular dynamic simulation study[J]. Chemical Engineering Journal, 2023, 464: 142636.
|
| [18] |
SUN C, ZHANG Z, LI S, et al. Synergistic effects between supercritical CO₂ and diluted microemulsion on enhanced oil recovery in shale oil reservoirs[C]//SPE Improved Oil Recovery Conference. Tulsa: Society of Petroleum Engineers, 2024: 295⁃309.
|
| [19] |
李传宪. 原油流变学[M]. 东营: 中国石油大学出版社, 2007.
|
| [20] |
张宇. 多相流动体系中蜡沉积规律研究[D]. 北京: 中国石油大学(北京), 2011.
|
| [21] |
WEN J B, LUO H J, LIANG W L, et al. Advances in modeling and prediction of crude oil⁃water emulsions under high water cut conditions[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107⁃118.
|
| [22] |
张劲军,张帆,黄启玉,等.绝热搅拌槽内流体平均剪切速率的一种计算方法[J].工程热物理学报,2002, 23(6): 703⁃706.
|
|
ZHANG J J, ZHANG F, HUANG Q Y, et al. An approach to estimating the average shear rate in an adiabatic stirred vessel[J]. Journal of Engineering Thermophysics, 2002, 23(6): 703⁃706.
|
| [23] |
WEN J, LUO H, LIANG W, et al. Advances in modeling and prediction of crude oil⁃water emulsions under high water cut conditions[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107⁃118.
|
| [24] |
李静华, 周继庠. 多相流体力学[M]. 北京: 化学工业出版社, 2001.
|
| [25] |
王玉明, 许立新. 油田乳状液破乳与油水分离动力学模型[J]. 石油学报, 2004, 25(6): 94⁃98.
|
|
WANG Y M, XU L X. Dynamic model of emulsion breaking and oil⁃water separation in oil fields[J]. Acta Petrolei Sinica, 2004, 25(6): 94⁃98.
|
| [26] |
SUN G Y, ZHANG J J, MA C B, et al. Start⁃up flow behavior of pipelines transporting waxy crude oil emulsion[J]. Journal of Petroleum Science and Engineering, 2016, 147: 746⁃755.
|
| [27] |
DE OLIVEIRA C Z, SOUZA W J, SANTANA C F, et al. Rheological properties of water⁃in⁃Brazilian crude oil emulsions: effect of water content, salinity, and pH[J]. Energy & Fuels, 2018, 32(8): 8880⁃8890.
|
| [28] |
WANG Y M, XU L X. Demulsification of oilfield emulsions and kinetic model of oil⁃water separation[J]. Acta Petrolei Sinica, 2004, 25(6): 94⁃98.
|
| [29] |
TAMBE D E, SHARMA M M. Factors controlling the stability of colloid⁃stabilized emulsions: Ⅲ. Measurement of the rheological properties of colloid⁃laden interfaces[J]. Journal of Colloid and Interface Science, 1995, 171(2): 456⁃462.
|
| [30] |
孙桓, 刘磊, 刘玉国, 等. 上下层电导率差异法表征原油乳状液稳定性[J]. 石油化工高等学校学报, 2023, 36(3): 17⁃23.
|
|
SUN H,LIU L,LIU Y G,et al.Stability of crude oil emulsion characterized by conductivity difference between upper and lower layers[J]. Journal of Petrochemical Universities,2023, 36(3): 17⁃23.
|