[1] |
刘泽坤, 谢媚娜, 何娴雅, 等. 结合碳捕集的SOFC⁃sCO2布雷顿循环集成系统性能分析[J]. 工程热物理学报, 2023, 44(11): 3016⁃3021.
|
|
LIU Z K, XIE M N, HE X Y, et al. Performance analysis of an integrated SOFC⁃sCO2 brayton cycle system combined with carbon capture[J]. Journal of Engineering Thermophysics, 2023, 44(11): 3016⁃3021.
|
[2] |
方震华, 李丁帅, 何依, 等. 两种冷热电联供系统的热经济对比分析[J]. 化学工程, 2021, 49(12): 12⁃16.
|
|
FANG Z H, LI D S, HE Y, et al. Comparative thermoeconomic analysis of two combined cooling, heating and power systems[J]. Chemical Engineering, 2021, 49(12): 12⁃16.
|
[3] |
乔焱, 姜文全, 杨帆, 等. 液化天然气冷能利用及固体氧化物燃料电池余热回收系统模拟与优化[J]. 中国电机工程学报, 2025, 45(12): 4791⁃4799.
|
|
QIAO Y, JIANG W Q, YANG F, et al. Simulation and optimization of liquefied natural gas cold energy utilization and solid oxide fuel cell waste heat recovery system[J]. Proceedings of the CSEE, 2025, 45(12): 4791⁃4799.
|
[4] |
LI C Y, WANG Y Z, WANG Y T, et al. Investigation of the recompression pathway in the supercritical CO2 brayton cycle: Cycle modification and thermodynamic study[J]. Applied Thermal Engineering, 2024, 248(Part B): 123280.
|
[5] |
WU J J, PAN Z, BINAMA M, et al. Exergoeconomic analysis and multi⁃objective whale optimization of an integrated solid oxide fuel cell and energy storage system using liquefied natural gas cold energy[J]. International Journal of Energy Research, 2022, 46(15): 24208⁃24228.
|
[6] |
王长顺, 宋昕洋, 杨帆, 等.利用液化天然气冷能的冷热电联供系统热力分析与优化[J]. 热力发电,2024,53(11):21⁃30.
|
|
WANG C S, SONG X Y, YANG F, et al. Thermal analysis and optimization of combined cooling, heating and power system using LNG cold energy[J]. Thermal Power Generation, 2024, 53(11): 21⁃30.
|
[7] |
HAROON M, SHEIKH N A, AYUB A, et al. Exergetic, economic and exergo⁃environmental analysis of bottoming power cycles operating with CO2⁃based binary mixture[J]. Energies, 2020, 13(19): 5080.
|
[8] |
GUO J Q, LI M J, XU J L, et al. Thermodynamic performance analysis of different supercritical Brayton cycles using CO2⁃based binary mixtures in the molten salt solar power tower systems[J]. Energy, 2019, 173: 785⁃798.
|
[9] |
郭嘉琪,王坤,朱含慧,等.超临界CO2及其混合工质布雷顿循环热力学分析[J].工程热物理学报,2017, 38(4):695⁃702.
|
|
GUO J Q, WANG K, ZHU H H, et al. Thermodynamic analysis of brayton cycles using supercritical carbon dioxide and its mixture as working fluid[J]. Journal of Engineering Thermophysics, 2017, 38(4): 695⁃702.
|
[10] |
MA Y N, HU P, JIA C Q, et al. Thermo⁃economic analysis and multi⁃objective optimization of supercritical Brayton cycles with CO2⁃based mixtures[J]. Applied Thermal Engineering, 2023, 219(Part A): 119492.
|
[11] |
陈旭阳, 杨帆, 姜文全, 等. 基于LNG冷能的卡琳娜⁃三级有机朗肯循环性能分析[J]. 辽宁石油化工大学学报, 2024, 44(5): 90⁃96.
|
|
CHEN X Y, YANG F, JIANG W Q, et al. Performance analysis of the kalina⁃three⁃stage organic rankine combined cycle based on LNG cold energy[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 90⁃96.
|
[12] |
LIU Y, HAN J T, YOU H L. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29700⁃29710.
|
[13] |
杨旸, 单新煜, 韩文杰, 等. 掺氢对现役天然气管道输送的影响[J]. 当代化工, 2025, 54(1): 197⁃201.
|
|
YANG Y, SHAN X Y, HAN W J, et al. Influence of hydrogen doping on transportation of active natural gas pipelines[J]. Contemporary Chemical Industry, 2025, 54(1): 197⁃201.
|
[14] |
朱建鲁, 刘金华, 李子禾, 等. FPLNG预处理及液化一体化工艺研究现状及发展趋势[J]. 低碳化学与化工, 2024, 49(5): 112⁃122.
|
|
ZHU J L, LIU J H, LI Z H, et al. Research status and development trends of FPLNG pretreatment and liquefaction integrated process[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2024, 49(5): 112⁃122.
|
[15] |
乔焱, 姜文全, 杨帆, 等. 一种冷热电联供和CO2捕集的联合动力循环[J]. 化学工程, 2023, 51(2): 46⁃50.
|
|
QIAO Y, JIANG W Q, YANG F, et al. A combined power cycle of cold, heat and electricity and CO2 capture[J]. Chemical Engineering, 2023, 51(2): 46⁃50.
|
[16] |
潘本艺, 杨帆, 周莉, 等. 液化天然气冷能利用的联合动力循环[J]. 高校化学工程学报, 2021, 35(4): 702⁃710.
|
|
PAN B Y, YANG F, ZHOU L, et al. Combined power cycle for cold energy utilization of liquefied natural gas[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(4): 702⁃710.
|
[17] |
宋月芹, 胡伟, 陈雪琴, 等. 改性ZSM⁃5分子筛催化剂制备及正己烷催化裂解性能分析[J]. 东北石油大学学报, 2020, 44(5): 89⁃97.
|
|
SONG Y Q, HU W, CHEN X Q, et al. Preparation of modified ZSM⁃5 zeolite catalyst and analysis of n hexane catalytic cracking performance[J]. Journal of Northeast Petroleum University, 2020, 44(5): 89⁃97.
|
[18] |
LI Z K, ZHANG X T, HE X L, et al. Comparative analysis of thermal economy of two SOFC⁃GT⁃ST triple hybrid power systems with carbon capture and LNG cold energy utilization[J]. Energy Conversion and Management, 2022, 256: 115385.
|
[19] |
产文, 李会雄, 李熙. 集成有机朗肯循环的Allam⁃LNG冷电联产系统的热力学分析[J]. 中国电机工程学报, 2023, 43(17): 6688⁃6697.
|
|
CHAN W, LI H X, LI X. Thermodynamic analysis for the combined cooling and power system of the Allam⁃LNG cycle integrated with organic rankine cycle[J]. Proceedings of the CSEE, 2023, 43(17): 6688⁃6697.
|
[20] |
何依, 邹斌, 张丽, 等. 基于LNG冷能的双循环⁃卡琳娜冷电联供系统[J]. 辽宁石油化工大学学报, 2020, 40(1): 43⁃51.
|
|
HE Y, ZOU B, ZHANG L, et al. Dual⁃loop cycle⁃kalina combined cooling and power generation system based on LNG cold energy[J]. Journal of Liaoning Shihua University, 2020, 40(1): 43⁃51.
|
[21] |
FANG Z H, SHANG L Y, PAN Z, et al. Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic rankine and kalina cycles using liquified natural gas cold energy[J]. Energy Conversion and Management, 2021, 238: 114148.
|
[22] |
GHAEBI H, PARIKHANI T, ROSTAMZADEH H. A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis[J]. Renewable Energy, 2018, 119: 513⁃527.
|
[23] |
MOSAFFA A H, MOKARRAM N H, FARSHI L G. Thermo⁃economic analysis of combined different ORCs geothermal power plants and LNG cold energy[J]. Geothermics, 2017, 65: 113⁃125.
|