[1] |
刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283⁃2300.
|
|
LIU J S, DING W L, XIAO Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283⁃2300.
|
[2] |
何世明,陈俞霖,马德新,等.井壁稳定多场耦合分析研究进展[J].西南石油大学学报(自然科学版),2017, 39(2): 81⁃92.
|
|
HE S M, CHEN Y L, MA D X, et al. A review on wellbore stability with multi⁃field coupling analysis[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2): 81⁃92.
|
[3] |
邓媛,何世明,邓祥华,等.力化耦合作用下的层理性页岩气水平井井壁失稳研究[J].石油钻探技术,2020, 48(1): 26⁃33.
|
|
DENG Y, HE S M, DENG X H, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo⁃mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26⁃33.
|
[4] |
肖志强, 贾善坡, 亓宪寅, 等. 流⁃固⁃化耦合条件下硬脆性泥页岩井壁渐进破坏效应探讨[J]. 中南大学学报(自然科学版), 2019, 50(10): 2464⁃2480.
|
|
XIAO Z Q, JIA S P, QI X Y, et al. Hydraulic⁃mechanical⁃chemical coupling evaluation for progressive failure of hard brittle shale wellbore[J]. Journal of Central South University(Science and Technology), 2019, 50(10): 2464⁃2480.
|
[5] |
王倩, 周英操, 王刚, 等. 泥页岩井壁稳定流固化耦合模型[J]. 石油勘探与开发, 2012, 39(4): 475⁃480.
|
|
WANG Q, ZHOU Y C, WANG G, et al. A fluid⁃solid⁃chemistry coupling model for shale wellbore stability[J]. Petroleum Exploration and Development, 2012, 39(4): 475⁃480.
|
[6] |
李阳, 程远方, 闫传梁, 等. 南海神狐海域水合物地层多物理场耦合模型及井壁坍塌规律分析[J]. 中南大学学报(自然科学版), 2022, 53(3): 976⁃990.
|
|
LI Y, CHENG Y F, YAN C L, et al. Multi⁃physical field coupling model of hydrate formation and analysis of wellbore collapse law in Shenhu area of South China Sea[J]. Journal of Central South University(Science and Technology), 2022, 53(3): 976⁃990.
|
[7] |
ZHOU X X, GHASSEMI A. Finite element analysis of coupled chemo⁃poro⁃thermo⁃mechanical effects around a wellbore in swelling shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 769⁃778.
|
[8] |
GHASSEMI A, ZHANG Q. A transient fictitious stress boundary element method for porothermoelastic media[J]. Engineering Analysis with Boundary Elements, 2004, 28(11): 1363⁃1373.
|
[9] |
张宇,赵林, 王炳红, 等. 流⁃固⁃化⁃热耦合的陆相页岩井壁稳定力学模型及应用[J]. 特种油气藏, 2019, 26(3): 163⁃168.
|
|
ZHANG Y, ZHAO L, WANG B H, et al. Fluid⁃solid⁃chemical⁃thermal coupling mechanical model of wellbore stability for continental shale and its application[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 163⁃168.
|
[10] |
GAO J J, LIN H, WU B S, et al. Porochemothermoelastic solutions considering fully coupled thermo⁃hydro⁃mechanical⁃chemical processes to analyze the stability of inclined boreholes in chemically active porous media[J]. Computers and Geotechnics, 2021, 134: 104019.
|
[11] |
LI W D, CHEN M, JIN Y, et al. Effect of local thermal non⁃equilibrium on thermoporoelastic response of a borehole in dual⁃porosity media[J]. Applied Thermal Engineering, 2018, 142: 166⁃183.
|
[12] |
GHASSEMI A, DIEK A. Linear chemo⁃poroelasticity for swelling shales: Theory and application[J]. Journal of Petroleum Science and Engineering, 2003, 38(3⁃4): 199⁃212.
|
[13] |
HAN S C, CHENG Y F, GAO Q, et al. Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo⁃poroelastic effects[J]. Energy Science & Engineering, 2019, 7(5): 1705⁃1726.
|
[14] |
HAN S C, CHENG Y F, GAO Q, et al. A fully coupled thermo⁃hydro⁃mechanical model with ice⁃water phase change for liquid nitrogen injection simulation[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108676.
|
[15] |
丰全会, 程远方, 张建国. 井壁稳定的弹塑性模型及其应用[J]. 石油钻探技术, 2000, 28(4): 9⁃11.
|
|
FENG Q H, CHENG Y F, ZHANG J G. Elastic & plastic model for borehole stability and its apllication[J]. Petroleum Drilling Techniques, 2000, 28(4): 9⁃11.
|
[16] |
OTTOSEN N S, RISTINMAA M. The mechanics of constitutive modeling[M]. Amsterdam: Elsevier, 2005.
|