Journal of Liaoning Petrochemical University ›› 2025, Vol. 45 ›› Issue (4): 8-18.DOI: 10.12422/j.issn.1672-6952.2025.04.002
• Chemistry and Chemical Engineering • Previous Articles Next Articles
Yichang LIU1,2(), Tie MI1,2(
), Fang HUANG1, Wei WAN2, Shanzhi XIN1
Received:
2024-07-13
Revised:
2024-09-18
Published:
2025-08-25
Online:
2025-07-24
Contact:
Tie MI
刘奕畅1,2(), 米铁1,2(
), 黄芳1, 万伟2, 辛善志1
通讯作者:
米铁
作者简介:
刘奕畅(1999⁃),男,硕士研究生,从事固体有机废弃物资源化研究;E⁃mail:1172820899@qq.com。
基金资助:
CLC Number:
Yichang LIU, Tie MI, Fang HUANG, Wei WAN, Shanzhi XIN. Preparation and Adsorption Behaviors of a Biochar from Chinese Medicine Wastes with High Moisture[J]. Journal of Liaoning Petrochemical University, 2025, 45(4): 8-18.
刘奕畅, 米铁, 黄芳, 万伟, 辛善志. 高湿中药废渣制备生物炭及其吸附性能[J]. 辽宁石油化工大学学报, 2025, 45(4): 8-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.lnpu.edu.cn/EN/10.12422/j.issn.1672-6952.2025.04.002
元素或成分 | 数值 | 元素或成分 | 数值 |
---|---|---|---|
w(C)/% | 42.740 | w(灰分)/% | 4.375 |
w(H)/% | 6.045 | w(木质素)/% | 43.600 |
w(N)/% | 1.530 | w(纤维素)/% | 38.600 |
w(S)/% | 0.079 | w(半纤维素)/% | 13.400 |
w(O)/% | 45.231 |
Table 1 Main elements and components of traditional Chinese medicine waste residue
元素或成分 | 数值 | 元素或成分 | 数值 |
---|---|---|---|
w(C)/% | 42.740 | w(灰分)/% | 4.375 |
w(H)/% | 6.045 | w(木质素)/% | 43.600 |
w(N)/% | 1.530 | w(纤维素)/% | 38.600 |
w(S)/% | 0.079 | w(半纤维素)/% | 13.400 |
w(O)/% | 45.231 |
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃700⁃60⁃30 | 134.28 | 0.074 5 | 0.051 1 | 0.005 5 | 2.219 |
C⁃700⁃60⁃50 | 238.24 | 0.127 2 | 0.094 2 | 0.006 7 | 2.136 |
C⁃700⁃60⁃70 | 251.57 | 0.130 2 | 0.098 7 | 0.005 1 | 2.069 |
Table 2 Pore structure characteristics of biochar prepared at different moisture contents
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃700⁃60⁃30 | 134.28 | 0.074 5 | 0.051 1 | 0.005 5 | 2.219 |
C⁃700⁃60⁃50 | 238.24 | 0.127 2 | 0.094 2 | 0.006 7 | 2.136 |
C⁃700⁃60⁃70 | 251.57 | 0.130 2 | 0.098 7 | 0.005 1 | 2.069 |
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃600⁃60⁃50 | 96.22 | 0.047 7 | 0.041 0 | 0.000 6 | 1.981 |
C⁃700⁃60⁃50 | 212.98 | 0.110 3 | 0.086 6 | 0.002 1 | 2.071 |
C⁃800⁃60⁃50 | 138.48 | 0.081 0 | 0.033 5 | 0.051 6 | 2.191 |
Table 3 Pore structure characteristics of biochar prepared at different activation temperatures
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃600⁃60⁃50 | 96.22 | 0.047 7 | 0.041 0 | 0.000 6 | 1.981 |
C⁃700⁃60⁃50 | 212.98 | 0.110 3 | 0.086 6 | 0.002 1 | 2.071 |
C⁃800⁃60⁃50 | 138.48 | 0.081 0 | 0.033 5 | 0.051 6 | 2.191 |
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃700⁃50⁃50 | 247.12 | 0.131 7 | 0.094 2 | 0.010 0 | 2.131 |
C⁃700⁃60⁃50 | 309.29 | 0.166 2 | 0.116 8 | 0.014 8 | 2.149 |
C⁃700⁃70⁃50 | 236.77 | 0.126 8 | 0.089 7 | 0.009 8 | 2.141 |
Table 4 Pore structure characteristics of carbon materials at different activation times
样品 | 比表面积/ (m²·g-1) | 总孔容/ (cm³·g-1) | 微孔孔容/ (cm³·g-1) | 介孔孔容/ (cm³·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
C⁃700⁃50⁃50 | 247.12 | 0.131 7 | 0.094 2 | 0.010 0 | 2.131 |
C⁃700⁃60⁃50 | 309.29 | 0.166 2 | 0.116 8 | 0.014 8 | 2.149 |
C⁃700⁃70⁃50 | 236.77 | 0.126 8 | 0.089 7 | 0.009 8 | 2.141 |
原料 | 预处理情况 | 活化温度/℃ | 活化时间/min | 活化剂 | 浸渍比 | 比表面积/(m2·g-1) | 总孔容/(cm3·g-1) | 备注 | 文献 |
---|---|---|---|---|---|---|---|---|---|
中药渣 | — | 700 | 60 | — | — | 309.29 | 0.166 2 | 含水率为50% | 本文 |
葵花籽壳颗粒 | 干燥 | 530 | 10 | — | — | 2.91 | — | [ | |
松木 | 干燥 | 700 | 120 | — | — | 29.00 | — | N2氛围 | [ |
鱼骨 | 干燥 | 538 | 96 | — | — | 32.14 | 0.165 0 | N2氛围 | [ |
豆科植物木屑 | 110 ℃干燥过夜 | 850 | 120 | KOH | 1∶1 | 125.70 | 0.070 0 | N2氛围 | [ |
水稻秸秆 | 干燥 | 800 | 20 | CO2 | — | 191.55 | 0.130 6 | 物理活化 | [ |
水稻秸秆 | 干燥 | 800 | 20 | 水蒸气 | — | 164.96 | 0.093 2 | 物理活化 | [ |
水稻秸秆 | 干燥 | 800 | 20 | N2 | — | 41.66 | 0.032 6 | 物理活化 | [ |
茶渣 | 过100目 | 700 | 60 | — | — | 27.51 | — | [ | |
稻壳 | 30~40目 | 800 | 60~180 | — | — | 17.89 | 0.020 0 | N2氛围 | [ |
稻壳 | 30~40目 | 900 | 60~180 | — | — | 28.27 | 0.030 0 | N2氛围 | [ |
Table 5 Comparison of pore structure characteristics of biochar at different preparation methods
原料 | 预处理情况 | 活化温度/℃ | 活化时间/min | 活化剂 | 浸渍比 | 比表面积/(m2·g-1) | 总孔容/(cm3·g-1) | 备注 | 文献 |
---|---|---|---|---|---|---|---|---|---|
中药渣 | — | 700 | 60 | — | — | 309.29 | 0.166 2 | 含水率为50% | 本文 |
葵花籽壳颗粒 | 干燥 | 530 | 10 | — | — | 2.91 | — | [ | |
松木 | 干燥 | 700 | 120 | — | — | 29.00 | — | N2氛围 | [ |
鱼骨 | 干燥 | 538 | 96 | — | — | 32.14 | 0.165 0 | N2氛围 | [ |
豆科植物木屑 | 110 ℃干燥过夜 | 850 | 120 | KOH | 1∶1 | 125.70 | 0.070 0 | N2氛围 | [ |
水稻秸秆 | 干燥 | 800 | 20 | CO2 | — | 191.55 | 0.130 6 | 物理活化 | [ |
水稻秸秆 | 干燥 | 800 | 20 | 水蒸气 | — | 164.96 | 0.093 2 | 物理活化 | [ |
水稻秸秆 | 干燥 | 800 | 20 | N2 | — | 41.66 | 0.032 6 | 物理活化 | [ |
茶渣 | 过100目 | 700 | 60 | — | — | 27.51 | — | [ | |
稻壳 | 30~40目 | 800 | 60~180 | — | — | 17.89 | 0.020 0 | N2氛围 | [ |
稻壳 | 30~40目 | 900 | 60~180 | — | — | 28.27 | 0.030 0 | N2氛围 | [ |
金属 离子 | 温度/℃ | 准一级动力学 | 准二级动力学 | Q/ (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
qe/ (mg·g-1) | K1/min-1 | R2 | qe/ (mg·g-1) | K2/ (g·mg-1·min-1) | R2 | |||
Cu2+ | 600 | 9.95 | 0.251 8 | 0.977 5 | 11.43 | 0.026 2 | 0.988 8 | 10.57 |
700 | 19.90 | 0.191 2 | 0.970 8 | 22.33 | 0.012 0 | 0.972 8 | 20.66 | |
800 | 12.60 | 0.188 7 | 0.967 7 | 14.57 | 0.016 0 | 0.989 2 | 13.32 | |
Cd2+ | 600 | 8.22 | 0.529 5 | 0.895 6 | 9.05 | 0.075 0 | 0.974 4 | 9.04 |
700 | 16.92 | 0.830 9 | 0.978 5 | 18.02 | 0.067 8 | 0.990 9 | 17.41 | |
800 | 11.66 | 0.705 6 | 0.975 7 | 12.57 | 0.077 7 | 0.985 6 | 12.36 |
Table 6 Fitting parameters of biochar adsorption kinetics for Cu2+ and Cd2+
金属 离子 | 温度/℃ | 准一级动力学 | 准二级动力学 | Q/ (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
qe/ (mg·g-1) | K1/min-1 | R2 | qe/ (mg·g-1) | K2/ (g·mg-1·min-1) | R2 | |||
Cu2+ | 600 | 9.95 | 0.251 8 | 0.977 5 | 11.43 | 0.026 2 | 0.988 8 | 10.57 |
700 | 19.90 | 0.191 2 | 0.970 8 | 22.33 | 0.012 0 | 0.972 8 | 20.66 | |
800 | 12.60 | 0.188 7 | 0.967 7 | 14.57 | 0.016 0 | 0.989 2 | 13.32 | |
Cd2+ | 600 | 8.22 | 0.529 5 | 0.895 6 | 9.05 | 0.075 0 | 0.974 4 | 9.04 |
700 | 16.92 | 0.830 9 | 0.978 5 | 18.02 | 0.067 8 | 0.990 9 | 17.41 | |
800 | 11.66 | 0.705 6 | 0.975 7 | 12.57 | 0.077 7 | 0.985 6 | 12.36 |
原料 | 比表面积/ (m2·g-1) | 总孔容/ (cm3·g-1) | 金属离子 | 最佳pH | 最大吸附量/(mg·g-1) | 文献 |
---|---|---|---|---|---|---|
中药渣 | 309.29 | 0.166 2 | Cu2+ | 6 | 20.66 | 本文 |
中药渣 | 309.29 | 0.166 2 | Cd2+ | 5 | 17.41 | 本文 |
鸡蛋壳 | 64.92 | 12.610 0 | Cu2+ | 6 | 2.00 | [ |
富硒秸秆 | 238.99 | 76.050 0 | Cd2+ | 5 | 32.93 | [ |
小麦秸秆 | 373.34 | 0.193 0 | Cd2+ | — | 6.68 | [ |
稻壳 | 5.86 | 0.085 0 | Cu2+ | 6~7 | 15.05 | [ |
玉米秸秆 | 34.66 | 0.051 0 | Cu2+ | 8 | 4.66 | [ |
水稻秸秆 | 3.72 | 0.006 8 | Cd2+ | 7 | 0.48 | [ |
Table 7 Comparison of the adsorption capacity of biochar on Cu2+ and Cd2+
原料 | 比表面积/ (m2·g-1) | 总孔容/ (cm3·g-1) | 金属离子 | 最佳pH | 最大吸附量/(mg·g-1) | 文献 |
---|---|---|---|---|---|---|
中药渣 | 309.29 | 0.166 2 | Cu2+ | 6 | 20.66 | 本文 |
中药渣 | 309.29 | 0.166 2 | Cd2+ | 5 | 17.41 | 本文 |
鸡蛋壳 | 64.92 | 12.610 0 | Cu2+ | 6 | 2.00 | [ |
富硒秸秆 | 238.99 | 76.050 0 | Cd2+ | 5 | 32.93 | [ |
小麦秸秆 | 373.34 | 0.193 0 | Cd2+ | — | 6.68 | [ |
稻壳 | 5.86 | 0.085 0 | Cu2+ | 6~7 | 15.05 | [ |
玉米秸秆 | 34.66 | 0.051 0 | Cu2+ | 8 | 4.66 | [ |
水稻秸秆 | 3.72 | 0.006 8 | Cd2+ | 7 | 0.48 | [ |
[1] | KARUNANAYAKE A G, TODD O A, CROWLEY M L, et al. Rapid removal of salicylic acid, 4⁃nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir[J]. Chemical Engineering Journal, 2017, 319: 75⁃88. |
[2] | JIANG Y F, SUN H, YVES U J, et al. Impact of biochar produced from post⁃harvest residue on the adsorption behavior of diesel oil on loess soil[J]. Environmental Geochemistry and Health, 2016, 38(1): 243⁃253. |
[3] | CARPIO I E M, MACHADO⁃SANTELLI G, SAKATA S K, et al. Copper removal using a heavy⁃metal resistant microbial consortium in a fixed⁃bed reactor[J]. Water Research, 2014, 62: 156⁃166. |
[4] | GURAV R, BHATIA S K, CHOI T R, et al. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye[J]. Chemosphere, 2021, 264(Part 2): 128539. |
[5] | 张鹤鸣, 王宁生, 郑梁元. 加入WTO对21世纪中药现代化进程的影响[J]. 中国药房, 2000(2): 3⁃5. |
ZHANG H M, WANG N S, ZHENG L Y. The influence of acceding to WTO on the progress of modernization of Chinese materia medica in the 21st centary[J]. China Pharmacy, 2000(2): 3⁃5. | |
[6] | SHANG J G, ZONG M Z, YU Y, et al. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb⁃residue biochar[J]. Journal of Environmental Management, 2017, 197: 331⁃337. |
[7] | 孙彬, 李晓屿, 陈鹏, 等. 多孔材料改性碳纤维及其增强复合材料界面性能研究进展[J]. 辽宁石油化工大学学报, 2025, 45(1): 33⁃40. |
SUN B, LI X Y, CHEN P, et al. Research progress on interfacial properties of Carbon fiber composites modified by porous materials[J]. Journal of Liaoning Petrochemical University, 2025, 45(1): 33⁃40. | |
[8] | 何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11): 3376⁃3382. |
HE W Z, HE L L, LI W H, et al. Adsorption of sulfamerazine from water by biochar derived from Astragalus membranaceus residue[J]. China Environmental Science, 2016, 36(11): 3376⁃3382. | |
[9] | 沈启斌. 二氧化锰改性药渣生物炭的制备及其去除水中四环素的研究[D]. 广州: 华南理工大学, 2020. |
[10] | 米铁, 辛善志, 陈梁, 等. 一种中药材废渣制备活性炭的方法: CN201410648295.3[P]. 2014⁃11⁃14. |
[11] | EVERETT D H. Manual of symbols and terminology for physicochemical quantities and units, appendix Ⅱ: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure and Applied Chemistry, 1972, 31(4): 577⁃638. |
[12] | XIA C L, SHI S Q. Self⁃activation for activated carbon from biomass: theory and parameters[J]. Green Chemistry, 2016, 18(7): 2063⁃2071. |
[13] | BOUCHELTA C, MEDJRAM M S, BERTRAND O, et al. Preparation and characterization of activated carbon from date stones by physical activation with steam[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 70⁃77. |
[14] | BOUCHELTA C, MEDJRAM M S, ZOUBIDA M, et al. Effects of pyrolysis conditions on the porous structure development of date pits activated carbon[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 215⁃222. |
[15] | ZHANG Y J, XING Z J, DUAN Z K, et al. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J]. Applied Surface Science, 2014, 315: 279⁃286. |
[16] | DEMIRAL H, DEMIRAL İ, KARABACAKOĞLU B, et al. Production of activated carbon from olive bagasse by physical activation[J]. Chemical Engineering Research and Design, 2011, 89(2): 206⁃213. |
[17] | FU K F, YUE Q Y, GAO B Y, et al. Preparation, characterization and application of lignin⁃based activated carbon from black liquor lignin by steam activation[J]. Chemical Engineering Journal, 2013, 228: 1074⁃1082. |
[18] | WYSTALSKA K, KWARCIAK⁃KOZŁOWSKA A, WŁODARCZYK R. Influence of technical parameters of the pyrolysis process on the surface area, porosity, and hydrophobicity of biochar from sunflower husk pellet[J]. Sustainability, 2023, 15(1): 394. |
[19] | LIU Z G, ZHANG F S, WU J Z. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2): 510⁃514. |
[20] | TAN C M, ZHANG X D, LIAO C, et al. Optimization of fishbone biochar preparation process based on adsorption performance[J]. Sustainable Chemistry and Pharmacy, 2023, 32: 101015. |
[21] | DISSANAYAKE P D, CHOI S W, IGALAVITHANA A D, et al. Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109785. |
[22] | GONG H B, TAN Z X, ZHANG L M, et al. Preparation of biochar with high absorbability and its nutrient adsorption⁃desorption behaviour[J]. The Science of the Total Environment, 2019, 694: 133728. |
[23] | 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性[J]. 环境科学, 2020, 41(3): 1308⁃1318. |
FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution[J]. Environmental Science, 2020, 41(3): 1308⁃1318. | |
[24] | 闫改萌, 华先瑞, 王若茵, 等. 稻壳合成纳米多孔生物炭用于吸附亚甲基蓝[J]. 化学工程师, 2023, 37(1): 40⁃45. |
YAN G M, HUA X R, WANG R Y, et al. Synthesis of nano⁃porous biochar from rice husk for adsorption of methylene blue[J]. Chemical Engineer, 2023, 37(1): 40⁃45. | |
[25] | BELTRAME K K, CAZETTA A L, DE SOUZA P S C, et al. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves[J]. Ecotoxicology and Environmental Safety, 2018, 147: 64⁃71. |
[26] | 刘杰, 施胜利, 贾月慧, 等. 不同热解温度生物炭对Pb(Ⅱ)的吸附研究[J]. 农业环境科学学报, 2018, 37(11): 2586⁃2593. |
LIU J, SHI S L, JIA Y H, et al. Effect of the pyrolysis temperature on biochar adsorption of Pb2+[J]. Journal of Agro⁃Environment Science, 2018, 37(11): 2586⁃2593. | |
[27] | WU Z Y, CHEN X X, YUAN B L, et al. A facile foaming⁃polymerization strategy to prepare 3D MnO2 modified biochar⁃based porous hydrogels for efficient removal of Cd(Ⅱ) and Pb(Ⅱ)[J]. Chemosphere, 2020, 239: 124745. |
[28] | DEMIRAL H, GÜNGÖR C. Adsorption of copper(Ⅱ) from aqueous solutions on activated carbon prepared from grape bagasse[J]. Journal of Cleaner Production, 2016, 124: 103⁃113. |
[29] | YIN W Q, DAI D, HOU J H, et al. Hierarchical porous biochar⁃based functional materials derived from biowaste for Pb(Ⅱ) removal[J]. Applied Surface Science, 2019, 465: 297⁃302. |
[30] | WANG S, WANG N, YAO K, et al. Characterization and interpretation of Cd (Ⅱ) adsorption by different modified rice straws under contrasting conditions[J]. Scientific Reports, 2019, 9(1): 17868. |
[31] | AMIN M T, ALAZBA A A, SHAFIQ M. Removal of copper and lead using banana biochar in batch adsorption systems: isotherms and kinetic studies[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 5711⁃5722. |
[32] | TANG C F, SHU Y, ZHANG R Q, et al. Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana[J]. RSC Advances, 2017, 7(26): 16092⁃16103. |
[33] | LI W C, LAW F Y, CHAN Y H M. Biosorption studies on copper (Ⅱ) and cadmium (Ⅱ) using pretreated rice straw and rice husk[J]. Environmental Science and Pollution Research International, 2017, 24(10): 8903⁃8915. |
[34] | 韦思业, 宋建中, 彭平安, 等. 不同温度制备生物炭的热解产物特征[J]. 地球化学, 2019, 48(5): 511⁃520. |
WEI S Y, SONG J Z, PENG P A, et al. Characterization of pyrolysis products in biochar prepared at different temperatures[J]. Geochimica, 2019, 48(5): 511⁃520. | |
[35] | 马洁晨, 汪新亮, 张学胜, 等. 不同热解温度龙虾壳生物炭特征及对Zn2+的吸附机制[J]. 生态与农村环境学报, 2019, 35(7): 900⁃908. |
MA J C, WANG X L, ZHANG X S, et al. Influence of pyrolysis temperature on characteristics and Zn2+ adsorptive mechanism of crayfish shell biochars[J]. Journal of Ecology and Rural Environment, 2019, 35(7): 900⁃908. | |
[36] | MOHAN D, SINGH K P. Single and multi⁃component adsorption of cadmium and zinc using activated carbon derived from bagasse⁃an agricultural waste[J]. Water Research, 2002, 36(9): 2304⁃2318. |
[37] | 潘海龙, 王慧雅, 曹世海, 等. 一步法合成石墨相碳氮材料及降解双酚A[J]. 当代化工, 2025, 54(3): 629⁃634. |
PAN H L, WANG H Y, CAO S H, et al. One⁃step synthesis of graphitic carbon nitride materials and degradation of bisphenol A[J]. Contemporary Chemical Industry, 2025, 54(3): 629⁃634. | |
[38] | 宁尧, 刘满, 刘素燕. 多孔碳BVO/Zn@ZPC的制备及其光降解性能[J]. 石油化工高等学校学报, 2023, 36(6): 36⁃47. |
NING Y, LIU M, LIU S Y. Preparation and photodegradation performances of porous carbon BVO/Zn@ZPC[J]. Journal of Petrochemical Universities, 2023, 36(6): 36⁃47. | |
[39] | PRADO ACOSTA M, VALDMAN E, LEITE S G F, et al. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide[J]. World Journal of Microbiology and Biotechnology, 2005, 21(6): 1157⁃1163. |
[40] | 王帅, 商建英, 胡克林, 等. 溶液初始pH值及裂解温度对玉米秸秆基生物炭吸附Cr(Ⅵ)的影响[J]. 农业资源与环境学报, 2016(5): 443⁃448. |
WANG S, SHANG J Y, HU K L, et al. Impact of initial pH and pyrolysis temperature on the adsorption of Cr(Ⅵ) from aqueous solutions on corn straw⁃based materials[J]. Journal of Agricultural Resources and Environment, 2016(5): 443⁃448. | |
[41] | 陈立丰. 活性炭对电镀废水中Cr6+的吸附——活性炭选择吸附的热力学和动力学方法[J]. 水处理技术, 1992(3): 54⁃59. |
CHEN L F. Adsorption of Cr6+ in electroplating waste water on activated carbons thermodynamic and dynamic methods to select activated carbon[J]. Technology of Water Treatment, 1992(3): 54⁃59. | |
[42] | 彭庆庆. 壳聚糖改性材料制备及其对水溶液中重金属离子的吸附性能及机理研究[D]. 长沙: 湖南大学, 2017. |
[43] | 梁桓, 索全义, 侯建伟, 等. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性[J]. 土壤, 2015, 47(5): 886⁃891. |
LIANG H, SUO Q Y, HOU J W, et al. The structure characteristics and chemical properties of maize straw biochar and Artemisia ordosica biochar prepared at different carbonization temperatures[J]. Soils, 2015, 47(5): 886⁃891. | |
[44] | 李微, 韩苗苗, 朱心雨, 等. 鸡蛋壳生物炭对Cu(Ⅱ)和苯胺吸附研究[J]. 水处理技术, 2024, 50(9): 38⁃44. |
LI W, HAN M M, ZHU X Y, et al. Study on the adsorption of Cu(Ⅱ)and aniline by egg⁃shell biochar[J]. Technology of Water Treatment, 2024, 50(9): 38⁃44. | |
[45] | 高宗玉. 富硒秸秆生物炭对重金属镉的吸附效能[D]. 重庆: 重庆三峡学院, 2023. |
[46] | 郭丹丹, 翟小伟. 改性生物炭对Pb2+和Cd2+吸附性能及机理研究[J]. 应用化工, 2023, 52(3): 769⁃774. |
GUO D D, ZHAI X W. Adsorption performance and mechanism of modified biochar on Pb2+ and Cd2+[J]. Applied Chemical Industry, 2023, 52(3): 769⁃774. | |
[47] | 马武生, 王如平, 鲍家泽, 等. 改性稻壳生物炭对水体Cu2+、Zn2+的吸附特性与机制研究[J]. 扬州职业大学学报, 2022, 26(3): 32⁃38. |
MA W S, WANG R P, BAO J Z, et al. Research on adsorption characteristics and mechanisms of copper and zinc ion by modified rice husk biochar[J]. Journal of Yangzhou Polytechnic College, 2022, 26(3): 32⁃38. | |
[48] | 兰天, 张辉, 刘源, 等. 玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J]. 江苏农业学报, 2016, 32(2): 368⁃375. |
LAN T, ZHANG H, LIU Y, et al. Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(2): 368⁃375. | |
[49] | 杨海征, 袁宗琪, 徐晓林, 等. 低温裂解水稻秸秆生物炭对水体中Pb/Cd吸附的应用研究[J]. 曲靖师范学院学报, 2024, 43(3): 13⁃23. |
YANG H Z, YUAN Z Q, XU X L, et al. Application of low temperature pyrolysis rice straw biochar in Pb/Cd absorption from water[J]. Journal of Qujing Normal University, 2024, 43(3): 13⁃23. |
[1] | Hai XING, Xiaohua WANG, Ningning LIU. Adsorptive Removal of Congo Red by PVDF/MIL⁃53(Fe) Composite Membrane from Aqueous Solution [J]. Journal of Liaoning Petrochemical University, 2025, 45(4): 19-26. |
[2] | Tianqiang LIU, Weiwei JIAN, Qiuyan HAI, Hong ZHANG. An Experimental Study on the Adsorption of Benzene Utilizing CuO and Alkali⁃Modified Coconut Shell Activated Carbon [J]. Journal of Liaoning Petrochemical University, 2025, 45(4): 27-35. |
[3] | Xinyu WANG, Pengfei KONG, Zhongyan WANG, Feixue LIANG, Jia JU. Preparation of GO/CS Blend Membrane for Adsorption of Bilirubin [J]. Journal of Liaoning Petrochemical University, 2025, 45(3): 11-17. |
[4] | Bohan ZHUANG, Weiwei JIAN, Qiuyan HAI, Tianqiang LIU. Experimental Study on the Combined Adsorption of SO2 and NO by Bimetallic Modified Multi⁃Walled Carbon Nanotubes [J]. Journal of Liaoning Petrochemical University, 2025, 45(3): 26-33. |
[5] | Bingchao GUO, Yongfei YAN, Cunlei LI, Yiwan NING, Feng GU. Structural Optimization of a Gas Distributor of Vertical Adsorption Tower Based on CFD [J]. Journal of Liaoning Petrochemical University, 2025, 45(2): 61-67. |
[6] | Yani TANG, Ruiming YANG, Jingwen LI, Chao FEI, Bo WANG. Adsorption of Tetracycline in Water by Cu⁃Al Layered Bimetallic Biochar [J]. Journal of Liaoning Petrochemical University, 2025, 45(1): 19-26. |
[7] | Shuo ZHANG, Qiang SONG, Yulong ZHANG, Jiali ZHANG, Qi SUN. Research Progress and Application of Hydrogen Purification by Pressure Swing Adsorption [J]. Journal of Liaoning Petrochemical University, 2023, 43(6): 30-36. |
[8] | Yang Meng, Taiqing Wei, Dan Ai, Bo Wang, Zhiping Fan. Adsorption Performance of Chitosan⁃Rare Earth⁃Biochar Composite for Cr(Ⅵ) in Water [J]. Journal of Liaoning Petrochemical University, 2023, 43(3): 14-20. |
[9] | Jing Zhao, Tianyi Liu, Qiang Li, Xiaoxin Zhang, Yucai Qin, Lijuan Song. Grand Canonical Monte Carlo Simulation of Adsorption and Separation Performances of CO2/CH4 by NaX Zeolite [J]. Journal of Liaoning Petrochemical University, 2023, 43(2): 13-19. |
[10] | Ping Yang, Youxi Li, Wufeng Cai, Wenbo Liang, Linhai Duan. Preparation of Bimetallic MOF⁃74(Mg x Ni1-x ) and Its Adsorption and Separation Performance for CO2/N2 [J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 1-7. |
[11] | Yushi Wei, Rui Wang, Zhuang Lin, Heng Jiang, Mingren Huo, Xinyue Chen, Xiaoyan Liang, Chongyang Zhang. Facile Fabrication of Fe3O4⁃Based β⁃Cyclodextrin Polymers and Its Adsorption Performances [J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 28-35. |
[12] | Shujun Chen, Jianlin Pei, Yue Fu, Yaxue Zhang. Simulation Study on the Adsorption and Diffusion Behavior of Water Molecules in Modified MCM⁃41 [J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 1-7. |
[13] | Yongxin Fei, Huiqiang Ma, Shuang Li. Study on Adsorption Performance of Modified Activated Sludge Biochar for Phenol in Water [J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 19-24. |
[14] | Siqi Tong, Weiwei Jian, Qiuyan Hai, Weixin Xie, Yi Sun. Research Progress of Porous Solid Materials for CO2 Adsorption and Removal [J]. Journal of Liaoning Petrochemical University, 2022, 42(2): 30-37. |
[15] | Pingyue Zhao, Shuang Li, Fang Zong, Huiqiang Ma. Resource Utilization of Petroleum Resin Wastewater Sludge and Its Phosphorus Adsorption Performance [J]. Journal of Liaoning Petrochemical University, 2021, 41(6): 48-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Liaoning Petrochemical University
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56865105 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.