1 |
IQBAL A, SIDDIQUE S, MAQSOOD M, et al. Comparative analysis on the structure and properties of Iron⁃Based amorphous coating sprayed with the thermal spraying techniques[J]. Coatings, 2020, 10(10): 1006.
|
2 |
SWAIN B, MANTRY S, MOHAPATRA S S, et al. Investigation of tribological behavior of plasma sprayed NiTi coating for aerospace application[J]. Journal of Thermal Spray Technology, 2022, 31(8): 2342⁃2369.
|
3 |
LANZUTTI A, SORDETTI F, MARIN E, et al. The use of thin films as defect sealants to increase the corrosion resistance of thermal spray coatings[J]. Metals, 2023, 13(10): 1778.
|
4 |
JOLLY A, VITRY V, AZAR G T P, et al. Surface defect mitigation of additively manufactured parts using surfactant⁃mediated electroless nickel coatings[J]. Materials, 2024, 17(2): 406.
|
5 |
DARUT G, DIEU S, SCHNURIGER B, et al. State of the art of particle emissions in thermal spraying and other high energy processes based on metal powders[J]. Journal of Cleaner Production, 2021, 303: 126952.
|
6 |
JOSHI S. Special issue: Advances in thermal spray technology[J]. Materials, 2020, 13(16): 3521.
|
7 |
KAURA S, SHARMA S, BALA N. Comparison of surface coatings by plasma spray technique and biomimetic deposition on Ti alloy substrate: Morphology, composition, and corrosion resistance property[J]. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55(3): 583⁃590.
|
8 |
孙亚雄, 曹凤婷, 王铁钢, 等. 多功能型防腐涂层的研究现状及进展[J]. 辽宁石油化工大学学报, 2024, 44(5): 72⁃81.
|
|
SUN Y X, CAO F T, WANG T G, et al. Research progress of multi⁃function anti⁃corrosion coatings[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 72⁃81.
|
9 |
江利丰, 张广伟. 超音速火焰喷涂WC⁃10Co4Cr涂层组织及耐磨耐蚀性研究[J]. 辽宁石油化工大学学报, 2017, 37(2): 54⁃59.
|
|
JIANG L F, ZHANG G W. Study on the microstructure and wear/corrosion resistance of WC⁃10Co4Cr coating deposited by high velocity oxy⁃fuel[J]. Journal of Liaoning Shihua University, 2017, 37(2): 54⁃59.
|
10 |
GHOLIJANI A, SCHLAWITSCHEK C, GAMBARYAN⁃ROISMAN T, et al. Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119661.
|
11 |
SIVASANKAR V S, ETHA S A, HINES D R, et al. Coalescence of microscopic polymeric drops: Effect of drop impact velocities[J]. Langmuir, 2021, 37(45): 13512⁃13526.
|
12 |
LIN M, VO Q, MITRA S, et al. Viscous droplet impingement on soft substrates[J]. Soft Matter, 2022, 18(29): 5474⁃5482.
|
13 |
PASANDIDEH⁃FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650⁃659.
|
14 |
PASANDIDEH⁃FARD M, AZIZ S D, CHANDRA S, et al. Cooling effectiveness of a water drop impinging on a hot surface[J]. International Journal of Heat and Fluid Flow, 2001, 22(2): 201⁃210.
|
15 |
SHAKERI S, CHANDRA S. Splashing of molten tin droplets on a rough steel surface[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4561⁃4575.
|
16 |
XUE M X, CHANDRA S, MOSTAGHIMI J. Investigation of splat curling up in thermal spray coatings[J]. Journal of Thermal Spray Technology, 2006, 15(4): 531⁃536.
|
17 |
MCDONALD A, MOREAU C, CHANDRA S. Thermal contact resistance between plasma⁃sprayed particles and flat surfaces[J]. International Journal of Heat and Mass Transfer, 2007, 50(9⁃10): 1737⁃1749.
|
18 |
谢义英, 李强. 等离子喷涂8YSZ涂层在铝熔体作用下热冲击行为的数值模拟[J]. 表面技术, 2018, 47(4): 102⁃108.
|
|
XIE Y Y, LI Q. Numerical simulation of thermal shock behavior of plasma sprayed 8YSZ thermal barrier coatings subjected to molten aluminum[J]. Surface Technology, 2018, 47(4): 102⁃108.
|
19 |
SHEN M G, LI B Q, BAI Y. Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119267.
|
20 |
崔长文. 等离子喷涂涂层形成过程数值模拟[D]. 福州: 福州大学, 2011.
|
21 |
ZHANG M Y,ZHANG H,ZHENG L L.Numerical investigation of substrate melting and deformation during thermal spray coating by sph method[J]. Plasma Chemistry and Plasma Processing,2009,29(1):55⁃68.
|
22 |
JLEE J, SUBEDI K K, HUANG G W, et al. Numerical investigation of YSZ droplet impact on a heated wall for thermal spray application[J]. Journal of Thermal Spray Technology, 2022, 31(7): 2039⁃2049.
|
23 |
VINCENT S, BOT C L, SCRRET F, et al. Penalty and eulerian⁃lagrangian VOF methods for impact and solidification of metal droplets plasma spray process[J]. Computers & Fluids, 2015, 113: 32⁃41.
|
24 |
ZHU Z H, KAMNIS S, GU S. Numerical study of molten and semi⁃molten ceramic impingement by using coupled Eulerian and Lagrangian method[J]. Acta Materialia, 2015, 90: 77⁃87.
|
25 |
DHIMAN R,MCDONALD A G,CHANDRA S. Predicting splat morphology in a thermal spray process[J]. Surface and Coatings Technology,2008,201(18):7789⁃7801
|
26 |
DHIMAN R, CHANDRA S. Freezing⁃induced splashing during impact of molten metal droplets with high Weber numbers[J]. International Journal of Heat and Mass Transfer, 2005, 48(25⁃26): 5625⁃5638.
|
27 |
BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335⁃354
|
28 |
ALAVI S, PASSANDIDEH⁃FARD M, MOSTAGHIMI J, et al. Simulation of semi⁃molten particle impacts including heat transfer and phase change[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1278⁃1293.
|