1 |
张硕, 宋强, 张玉龙, 等. 变压吸附提纯氢气的研究进展及应用[J]. 辽宁石油化工大学学报, 2023, 43(6): 30⁃36.
|
|
ZHANG S, SONG Q, ZHANG Y L, et al. Research progress and application of hydrogen purification by pressure swing adsorption[J]. Journal of Liaoning Petrochemical University, 2023, 43(6): 30⁃36.
|
2 |
刘妮, 张明, 朱举贤, 等. 氢氧复合反应催化剂的研究进展[J]. 山东化工, 2023, 52(5): 88⁃90.
|
|
LIU N, ZHANG M, ZHU J X, et al. Research progress of catalysts for recombination of H2 and O2[J]. Shandong Chemical Industry, 2023, 52(5): 88⁃90.
|
3 |
吕燕, 张建生. 储氢合金粉表面包覆镍硼合金的研究[J]. 当代化工, 2014(8): 1453⁃1455.
|
|
LÜ Y, ZHANG J S. Study on the performance of metal⁃hydride electrodes coated with Ni⁃B alloy[J]. Contemporary Chemical Industry, 2014(8): 1453⁃1455.
|
4 |
张庆生, 黄雪松. 国内外氢能产业政策与技术经济性分析[J]. 低碳化学与化工, 2023, 48(2): 133⁃139.
|
|
ZHANG Q S, HUANG X S. Analysis of domestic and foreign hydrogen energy industrial policies and technical economy[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(2): 133⁃139.
|
5 |
ROSEN M A. Recent advances in hydrogen production from biomass[J]. Biofuels, 2017, 8(6): 633.
|
6 |
CAO Y L, ZHANG H, LIU X Y, et al. A strategy of mid⁃temperature natural gas based chemical looping reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(24): 12052⁃12066.
|
7 |
YANG S M, HUANG S Y, JIANG Q, et al. Experimental study of hydrogen generation from in⁃situ heavy oil gasification[J]. Fuel, 2022, 313: 122640.
|
8 |
SAHA S, MONDAL A, KURADE M B, et al. Cutting⁃edge technological advancements in biomass⁃derived hydrogen production[J]. Reviews in Environmental Science and Biotechnology, 2023, 22(2): 397⁃426.
|
9 |
YAN X S, LIU H L, LUO M, et al. Performance of hydrogen and power co⁃generation system based on chemical looping hydrogen generation of coal[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11180⁃11190.
|
10 |
张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 19⁃ 27.
|
|
ZHANG Y J, ZHANG B S, SUN J. Progress in hydrogen production by water electrolysis and its electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35(6): 19⁃27.
|
11 |
MENG F R, LI X C, QIU S, et al. Study on hydrogen production of Zhundong coal using chemical looping with Cu⁃Fe as oxygen carrier[J]. Combustion Science and Technology, 2021, 194(15): 3188⁃3205.
|
12 |
张帅, 肖睿, 杨宏伟, 等. 黄豆秸秆灰改性铁矿石载氧体的燃煤化学链燃烧反应特性研究[J]. 中国电机工程学报, 2017, 37(8): 2304⁃2311.
|
|
ZHANG S, XIAO R, YANG H W, et al. Investigation on the reaction performance of soybean stalk ash modified iron ore oxygen carrier in Coal⁃Fuelled chemical looping combustion[J]. Proceedings of the CSEE, 2017, 37(8): 2304⁃2311.
|
13 |
WU J L, BAI L, TIAN H J, et al. Chemical looping gasification of lignin with bimetallic oxygen carriers[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102897.
|
14 |
GU H M, LANG S, SONG G H, et al. Enhanced chemical looping hydrogen production based on biomass ash⁃promoted iron ore oxygen carrier[J]. Chemical Engineering Journal, 2019, 360: 260⁃270.
|
15 |
FANG Y H, WANG Z H, WANG C R, et al. Enhanced methane conversion in chemical looping partial oxidation of iron⁃based oxygen carriers[J]. JOM, 2023, 75(5): 1530⁃1539.
|
16 |
DANESHMAND⁃JAHROMI S, SEDGHKERDAR M H, MAHINPEY N. A review of chemical looping combustion technology: Fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626.
|
17 |
孔庆峰. 煤化学链燃烧中过渡金属载氧体晶格氧迁移转化特性研究[D]. 南京: 东南大学, 2022.
|
18 |
GAO G H, LAI Y H, WANG S. Particle⁃resolved simulation of Fe⁃based oxygen carrier in chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34624⁃34633.
|
19 |
ZENG L, CHENG Z, FAN J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349⁃364.
|
20 |
李斌, 韩旭, 陈义龙, 等. 不同钙基吸收剂对玉米秸秆热解气化制氢特性的影响[J]. 可再生能源, 2017, 35(4): 502⁃507.
|
|
LI B, HAN X, CHEN Y L, et al. Effects of different calcium⁃based absorbents on hydrogen production of corn stalk pyrolysis⁃gasification[J]. Renewable Energy Resources, 2017, 35(4): 502⁃507.
|
21 |
GAO X Y, LIU H J, HIDAJAT P K, et al. Anti⁃coking Ni/SiO2 catalyst for dry reforming of methane: Role of oleylamine/oleic acid organic pair[J]. ChemCatChem, 2016, 7(24): 4188⁃4196.
|
22 |
BIAN Z F, SURYAWINATA I Y, KAWI S. Highly carbon resistant multicore⁃shell catalyst derived from Ni⁃Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1⁃8.
|
23 |
WANG W J, ZHANG B, WANG G P, et al. O2 release of Mn⁃based oxygen carrier for chemical looping air separation(CLAS): An insight into kinetic studies[J]. Aerosol and Air Quality Research, 2016, 16(2): 453⁃463.
|
24 |
BOTAS J A, MARUGÁN J, MOLINA R, et al. Kinetic modelling of the first step of Mn2O3/MnO thermochemical cycle for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18661⁃18671.
|
25 |
GANESAN P, PRABU M, Sanetuntikulet J, et al. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide:An efficient electrocatalyst for oxygen reduction and evolution reactions[J]. ACS Catalysis, 2015, 5(6): 3625⁃3637.
|
26 |
KUMAR N, RAMAN N, SUNDAREASAN A. Synthesis and properties of cobalt sulfide phases: CoS2 and Co9S8[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640(6): 1069⁃1074.
|
27 |
TIAN X, SU M Z, ZHAO H B. Kinetics of redox reactions of Cuo@TiO2⁃AlO3 for chemical looping combustion and chemical looping with oxygen uncoupling[J]. Combust and Flame, 2020, 213: 255⁃267.
|
28 |
HU W T, DONAT F, SCOTT S A, et al. Kinetics of oxygen uncoupling of a copper based oxygen carrier[J]. Applied Energy, 2016, 161: 92⁃100.
|
29 |
BU H F, CHEN G P, TIAN X, et al. Chemical looping combustion of coal chars using iron ore of different grades as oxygen carriers[J]. Energy & Fuels, 2021, 35(20): 16494⁃16505.
|
30 |
YAN J C, GE H J, JIANG S X, et al. Effect of sodium removal on chemical looping combustion of high⁃sodium coal with hematite as an oxygen carrier[J]. Energy & Fuels, 2019, 33(3): 2153⁃2165.
|
31 |
ZHAN X, ZHO H, SIKARWAR V S, et al. Biomass⁃based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885⁃1910.
|
32 |
姜江, 金晶, 段惠维, 等. 金属载氧体可持续循环能力特性研究[J]. 工程热物理学报, 2009, 30(3): 505⁃508.
|
|
JIANG J, JIN J, DUAN H W, et al. The sustainable capability research of the metal oxygen carrier[J]. Journal of Engineering Thermophysics, 2009, 30(3): 505⁃508.
|
33 |
BHAVSAR S, TACKETT B, VESER G. Evaluation of iron⁃and manganese⁃based mono⁃and mixed⁃metallic oxygen carriers for chemical looping combustion[J]. Fuel, 2014, 136(15): 268⁃279.
|
34 |
安阳, 袁思杰, 高振东, 等. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648⁃654.
|
|
AN Y, YUAN S J, GAO Z D, et al. Chemical looping hydrogen generation of coal with oxygen carrier of Mg⁃modified Fe/Al[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 648⁃654.
|
35 |
GUAN Y, LIU Y H, LIN X L, et al. Research progress and perspectives of solid fuels chemical looping reaction with Fe⁃based oxygen carriers[J]. Energy & Fuels, 2022, 36(23): 13956⁃13984.
|
36 |
ABDALAZEEZ A, LI T L, CAO Y A, et al. Syngas production from chemical looping gasification of rice husk⁃derived biochar over iron⁃based oxygen carriers modified by different alkaline earth metals[J]. International Journal of Hydrogen Energy, 2022, 47(97): 40881⁃40894.
|
37 |
LIU S Q, HE F, ZHAO K, et al. Long⁃term coal chemical looping gasification using a bimetallic oxygen carrier of natural hematite and copper ore[J]. Fuel, 2022, 309: 122106.
|
38 |
ZORNOZA B, ABAD A, MENDIARA T, et al. Iron⁃based oxygen carrier particles produced from micronized size minerals or industrial wastes[J]. Powder Technology, 2022, 396: 637⁃647.
|
39 |
TIAN Q, CHE L X, DING B, et al. Performance of Cu⁃Fe⁃based oxygen carrier in a CLC process based on fixed bed reactors[J]. Greenhouse Gases: Science and Technology, 2017, 7(4): 731⁃744.
|
40 |
ABAD A, ADÁNEZ J, GARCÍA⁃LABIANO F, et al. Mapping of the range of operational conditions for Cu⁃, Fe⁃, and Ni⁃based oxygen carriers in chemical⁃looping combustion[J]. Chemical Engineering Science, 2007, 62(1/2): 533⁃549.
|
41 |
BROWN T A, SCALA F, SCOTT S A, et al. The attrition behaviour of oxygen⁃carriers under inert and reacting conditions[J]. Chemical Engineering Science, 2012, 71: 449⁃467.
|
42 |
HU J W, POELMAN H, MARIN G B, et al. FeO controls the sintering of iron⁃based oxygen carriers in chemical looping CO2 conversion[J]. Journal of CO2 Utilization, 2020, 40: 101216.
|
43 |
GALVITA V V, POELMAN H, BLIZNUK V, et al. CeO2⁃modified Fe2O3 for CO2 utilization via chemical looping[J]. Industrial & Engineering Chemistry Research, 2013, 52: 8416⁃8426.
|
44 |
于庆波, 吴天威, 姚鑫, 等. 铜基载氧体吸放氧性能的固定床实验研究[J]. 东北大学学报(自然科学版), 2016, 37(6): 795⁃799.
|
|
YU Q B, WU T W, YAO X, et al. Experimental study of the oxidation⁃reduction property of Cu⁃based oxygen carrier in the fixed bed[J]. Journal of Northeastern University(Natural Science), 2016, 37(6): 795⁃799.
|
45 |
YANG L, LI C F, SONG C, et al. Spatial migration of lattice oxygen for copper⁃iron based oxygen carriers in chemical looping combustion[J]. Energy, 2023, 285: 129348.
|
46 |
ROSLAN N A, ABIDIN S Z, IDERIS A, et al. A review on glycerol reforming processes over Ni⁃based catalyst for hydrogen and syngas productions[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18466⁃18489.
|
47 |
BLAS L, DORGE S, MICHELIN L, et al. Influence of the regeneration conditions on the performances and the microstructure modifications of NiO/NiAl2O4 for chemical looping combustion[J]. Fuel, 2015, 153: 284⁃293.
|
48 |
ZAFAR Q, MATTISSON T, GEVERT B. Integrated hydrogen and power production with CO2 capture using chemical⁃looping reforming⁃redox reactivity of particles of CuO,Mn2O3,NiO,and Fe2O3 using SiO2 as a support[J]. Industrial & Engineering Chemistry Research, 2005, 44: 3485⁃3496.
|
49 |
RAMEZANI R, FELICE L D, GALLUCCI F, et al. A review of chemical looping reforming technologies for hydrogen production: Recent advances and future challenges[J]. Journal of Physics: Energy, 2023, 5: 024010.
|
50 |
白歆慰, 刘金昌, 白磊. 煤化学链燃烧载氧体研究进展[J]. 洁净煤技术, 2021, 27(2): 31⁃44.
|
|
BAI X W, LIU J C, BAI L. Recent advances in oxygen carriers for chemical looping combustion of coal[J]. Clean Coal Technology, 2021, 27(2): 31⁃44.
|
51 |
MA Z, ZHANG S, XIAO R. Insights into the relationship between microstructural evolution and deactivation of Al2O3 supported Fe2O3 oxygen carrier in chemical looping combustion[J]. Energy Conversion and Management, 2019, 188: 429⁃437.
|
52 |
ANRZARA A, HERACLEOUS E, SILVESTER L, et al. Activity study of NiO⁃based oxygen carriers in chemical looping steam methane reforming[J]. Catalysis Today, 2016, 272: 32⁃41.
|
53 |
LIU W D, SHEN L H, GU H M, et al. Chemical looping hydrogen generation using potassium⁃modified iron oreas an oxygen carrier[J]. Energy & Fuels, 2016, 30(3): 1756⁃1763.
|
54 |
马阅新. CuFe双金属氧载体的生物质化学链气化研究[D]. 武汉: 华中科技大学, 2016.
|
55 |
YANG J, MA L P, YANG J, et al. Mechanism of lignite⁃to⁃pure syngas low temperature chemical looping gasification synergistic in situ S capture[J]. Fuel, 2018, 222: 675⁃686.
|
56 |
YANG M, SONG D, LI Y, et al. High⁃quality syngas production by chemical looping gasification of bituminite based on NiFe2O4 oxygen carrier[J]. Energies, 2023, 16(8): 3385.
|
57 |
MIAO Z W, JIANG E C, HU Z F. Review of agglomeration in biomass chemical looping technology[J]. Fuel, 2022, 309: 122199.
|
58 |
YU C J, QIN J G, NIE H, et al. Experimental research on agglomeration in straw⁃fired fluidized beds[J]. Applied Energy, 2011, 88(12): 4534⁃4543.
|
59 |
ZHOU J B, LIU D P, YE M, et al. Data⁃driven prediction of minimum fluidization velocity in gas⁃fluidized beds using data extracted by text mining[J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13727⁃13739.
|
60 |
MORRIS J D, DAOOD S S, CHILTON S, et al. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: A review[J]. Fuel, 2018, 230: 452⁃473.
|
61 |
YAO X W, HU Y L, GE J, et al. A comprehensive study on influence of operating parameters on agglomeration of ashes during biomass gasification in a laboratory⁃scale gasification system[J]. Fuel, 2020, 276: 118083.
|
62 |
HU Z F, MIAO Z W, YANG W H, et al. Effect of reaction conditions on the agglomeration of the oxygen carrier in biomass chemical looping gasification[J]. Journal of the Energy Institute, 2024, 113: 101543.
|
63 |
UDOMSIRICHAKORN J, SALAM P A. Review of hydrogen⁃enriched gas production from steam gasification of biomass: The prospect of CaO⁃based chemical looping gasification[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 565⁃579.
|