Journal of Liaoning Petrochemical University ›› 2024, Vol. 44 ›› Issue (6): 81-88.DOI: 10.12422/j.issn.1672-6952.2024.06.011

• Information and Control Engineering • Previous Articles     Next Articles

Detection Network for Small Defects in Oil and Gas Pipelines Based on Shallow Feature Suppression

Pengcheng HAO1(), Xianming LANG1(), Xiaoqing GUO2   

  1. 1.School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China
    2.AVIC SAC Commercial Aircraft Company Limited,Shenyang Liaoning 110000,China
  • Received:2024-08-07 Revised:2024-09-04 Published:2024-12-25 Online:2024-12-24
  • Contact: Xianming LANG

基于浅层特征抑制的油气管道小缺陷检测网络

郝鹏程1(), 郎宪明1(), 郭晓庆2   

  1. 1.辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
    2.中航沈飞民用飞机有限责任公司,辽宁 沈阳 110000
  • 通讯作者: 郎宪明
  • 作者简介:郝鹏程(1999⁃),男,硕士研究生,从事管道缺陷识别检测和漏磁图像处理方面的研究;E⁃mail:haopengcheng@stu.lnpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62073158);辽宁省自然科学基金计划面上项目(2023?MS?289);辽宁省教育厅基本科研项目(JYTMS20231441);辽宁省应用基础研究计划项目(2023JH26/10300013);辽宁振兴人才基金项目(XLYC220316)

Abstract:

To address the issues of scarce small defect samples and poor detection accuracy in magnetic flux leakage (MFL) testing of oil and gas pipelines, this paper proposes a small defect detection network for oil and gas pipelines on the basis of shallow feature suppression. First, an adversarial generative network is utilized, which incorporates prior knowledge to generate high?quality small defect samples. Subsequently, a defect feature suppression module is introduced during the feature extraction process, which suppresses the semantics of large defects in shallow pyramid features, thereby enhancing the features of small defects. Finally, a multi?scale Transformer is employed to fully leverage the local details and global information of the feature images, improving the accuracy of pipeline defect detection. The experimental results demonstrate that the accuracy of this model is 95.1%, which is 7.8% higher than the average value of existing faster R?CNN and other methods methods.

Key words: Small defect detection, Magnetic flux leakage, Pyramid feature fusion, CNN, Attention mechanisms

摘要:

针对在漏磁检测中石油和天然气管道中的小缺陷样本稀缺及检测精度不佳的问题,提出了基于浅层特征抑制的油气管道小缺陷检测网络。首先,利用对抗生成网络并融入先验知识,以生成高质量小缺陷样本。然后,在特征提取过程中引入缺陷特征抑制模块,在浅层金字塔特征中抑制大缺陷语义从而增强小缺陷特征。最后,多尺度注意力变换器(Transformer)充分利用特征图像的局部细节和全局信息提高管道缺陷检测准确率。实验结果表明,该模型检测的准确率为95.1%,比现有的Faster R?CNN等方法的平均值高7.8%。

关键词: 小缺陷检测, 漏磁图像, 特征金字塔, 卷积神经网络, 注意力机制

CLC Number: 

Cite this article

Pengcheng HAO, Xianming LANG, Xiaoqing GUO. Detection Network for Small Defects in Oil and Gas Pipelines Based on Shallow Feature Suppression[J]. Journal of Liaoning Petrochemical University, 2024, 44(6): 81-88.

郝鹏程, 郎宪明, 郭晓庆. 基于浅层特征抑制的油气管道小缺陷检测网络[J]. 辽宁石油化工大学学报, 2024, 44(6): 81-88.