1 |
HIREMATH N, MAYS J, BHAT G. Recent developments in carbon fibers and carbon nanotube⁃based fibers: A review[J]. Polymer Reviews, 2017, 57(2): 339⁃368.
|
2 |
董罡, 宋卓彦, 何春晖, 等. 新型碳纤维复合导电材料的制备以及性能研究[J]. 当代化工, 2019, 48(6): 1267⁃1271.
|
|
DONG G, SONG Z Y, HE C H, et al. Study on preparation and properties of new carbon fiber composite conductive material[J]. Contemporary Chemical Industry, 2019, 48(6): 1267⁃1271.
|
3 |
王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020(8): 48⁃49.
|
|
WANG J Z. Application status and improvement of carbon fiber composites in aviation field[J]. Manufacture & Upgrading Today, 2020(8): 48⁃49.
|
4 |
李娜, 李晓屿, 黄玉东, 等. 基于电泳沉积法碳纤维表面改性的研究进展及应用[J]. 高分子通报, 2021(2): 29⁃37.
|
|
LI N, LI X Y, HUANG Y D, et al. Research progress and application of carbon fiber surface modification based on electrophoretic deposition[J]. Chinese Polymer Bulletin, 2021(2): 29⁃37.
|
5 |
CALIMAN R. Study on the kinetics of the chemical vapor deposition process for the coating of carbon fibers from the structure of composites materials with metal and non⁃metal matrix[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1182(1): 109197.
|
6 |
李君, 矫维成, 闫美玲, 等. 碳纳米材料接枝碳纤维的复合材料界面增效研究进展[J]. 玻璃钢/复合材料, 2018(1): 108⁃113.
|
|
LI J, JIAO W C, YAN M L, et al. Research progress on composite interface design of grafting carbon nanomaterials onto carbon fibers[J]. Fiber Reinforced Plastics/Composites, 2018(1): 108⁃113.
|
7 |
马媛媛, 王江涛, 党建蓉, 等. 碳纤维表面化学结构对其增强环氧树脂基复合材料性能的分子动力学模拟[J]. 中国胶粘剂, 2023, 32(9): 21⁃26.
|
|
MA Y Y, WANG J T, DANG J R, et al. Molecular dynamics simulation of the properties of epoxy resin composite material reinforced by surface chemical structure of carbon fiber[J]. China Adhesives, 2023, 32(9): 21⁃26.
|
8 |
张宋茂苗, 张罡, 赵平, 等. 碳纤维复合材料在不同温度下的性能差异[J]. 辽宁化工, 2023, 52(9): 1365⁃1369.
|
|
ZHANG S M M, ZHANG G, ZHAO P, et al. Performance differences of carbon fiber composites at different temperatures[J]. Liaoning Chemical Industry, 2023, 52(9): 1365⁃1369.
|
9 |
任明伟, 自雅娴, 张莹, 等. 氧化石墨烯的尺寸对碳纤维/环氧树脂湿热界面性能的影响[J]. 材料工程, 2023, 51(9): 208⁃216.
|
|
REN M W, ZI Y X, ZHANG Y, et al. Influence of size of graphene oxide on interfacial properties of carbon fiber/epoxy resin under damp and heat conditions[J]. Journal of Materials Engineering, 2023, 51(9): 208⁃216.
|
10 |
汪莹, 李敏, 李桃山, 等. 基于拉伸载荷的碳纤维/环氧树脂层合板疲劳断裂机理[J]. 塑料科技, 2023, 51(8): 37⁃42.
|
|
WANG Y, LI M, LI T S, et al. Fatigue fracture mechanism of carbon fiber/epoxy laminates based on tensile loading[J]. Plastics Science and Technology, 2023, 51(8): 37⁃42.
|
11 |
QIAN H, BISMARCK A, GREENHALGH E S, et al. Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1107⁃1114.
|
12 |
武栋良. 纳米材料接枝改性碳纤维及其界面活化设计[D]. 青岛: 山东科技大学, 2020.
|
13 |
SAMSUR R, RANGARI V K, JEELANI S, et al. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties[J]. Journal of Applied Physics, 2013, 113(21): 214903.
|
14 |
GANGINENI P K, YANDRAPU S, GHOSH S K, et al. Mechanical behavior of raphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups[J]. Composites Part A: Applied Science and Manufacturing, 2019, 122: 36⁃44.
|
15 |
ALTIN Y, YILMAZ H, UNSAL O F, et al. Graphene oxide modified carbon fiber reinforced epoxy composites[J]. Journal of Polymer Engineering, 2020, 40(5): 415⁃420.
|
16 |
WANG C F, ZHAO M, LI J, et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy⁃based composites[J]. Polymer, 2017, 131: 263⁃271.
|
17 |
DONG J D, JIA C Y, WANG M Q, et al. Improved mechanical properties of carbon fiber⁃reinforced epoxy composites by growing carbon black on carbon fiber surface[J]. Composites Science and Technology, 2017, 149: 75⁃80.
|
18 |
WANG J, MA C G, CHEN G, et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black⁃loaded polypropylene non⁃woven fabric interleaves[J]. Composite Structures, 2020, 234: 111649.
|
19 |
ZHAO Z B, TENG K Y, LI N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface[J]. Composite Structures, 2017, 159: 761⁃772.
|
20 |
刘玉婷, 李璐, 王嘉沛, 等. 碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响[J]. 新型碳材料, 2021, 36(3): 639⁃648.
|
|
LIU Y T, LI L, WANG J P, et al. Effect of carbon nanotubes on interfacial properties of a carbon fiber/polycarbonate composite[J]. New Carbon Materials, 2021, 36(3): 639⁃648.
|
21 |
LONG C M, NASCARELLA M A, VALBERG P A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions[J]. Environmental Pollution, 2013, 181: 271⁃286.
|
22 |
GAO B, ZHANG R L, HE M S, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 433⁃440.
|
23 |
张思思, 袁岚, 卞雯, 等. 新型多孔材料的合成及应用研究进展[J]. 工业催化, 2023, 31(1): 22⁃28.
|
|
ZHANG S S, YUAN L, BIAN W, et al. Progresson synthesis and application of new porous materials[J]. Industrial Catalysis, 2023, 31(1): 22⁃28.
|
24 |
CHEN H, LIU X F, LI H Y, et al. Rational designed isostructural MOF for the charge⁃discharge behavior study of super capacitors[J]. Nano Research, 2022, 15(7): 6208⁃6212.
|
25 |
CHEN C L, MENG L K, ALALOUNR M R, et al. Ultra⁃highly active Ni⁃doped MOF⁃5 heterogeneous catalysts for ethylene dimerization[J]. Small, 2023, 19(25): 2301235.
|
26 |
YANG C R, CHENG P W, TSENG S F. Highly responsive and selective NO2 gas sensors based on titanium metal organic framework (Ti⁃MOF) with pyromellitic acid[J]. Sensors and Actuators A: Physical, 2023, 354: 114301.
|
27 |
曲静, 李秦伟. MOFs材料研究进展[J]. 当代化工, 2019, 48(4): 819⁃824.
|
|
QU J, LI Q W. Research progress of MOFs materials[J]. Contemporary Chemical Industry, 2019, 48(4): 819⁃824.
|
28 |
张维东, 郑青榕, 王泽浩, 等. 甲烷在MOF⁃5和MOF⁃199上的吸附平衡[J]. 天然气化工(C1化学与化工), 2019, 44(6): 45⁃51.
|
|
ZHANG W D, ZHENG Q R, WANG Z H, et al. Adsorption equilibrium of methane on MOF⁃5 and MOF⁃199[J]. Natural Gas Chemical Industry, 2019, 44(6): 45⁃51.
|
29 |
ZHAN Y X, WANG Y T, WANG M, et al. Improving the curing and mechanical properties of short carbon fibers/epoxy composites by grafting Nano ZIF⁃8 on fibers[J]. Advanced Materials Interfaces, 2020, 7(2): 1901490.
|
30 |
BROZEK C K, MICHAELIS V K, ONG T C, et al. Dynamic DMF binding in MOF⁃5 enables the formation of metastable cobalt⁃substituted MOF⁃5 analogues[J]. ACS Central Science, 2015, 1(5): 252⁃260.
|
31 |
OUYANG H B, ZHOU M, FEI J, et al. Grafting the buffer interphase "MOF⁃5" for acquiring carbon fiber reinforced composite with excellent mechanical and tribological properties[J]. Journal of Applied Polymer Science, 2022, 139(3): 51493.
|
32 |
LI Y, JIANG B, HUANG Y D. Constructing nanosheet⁃like MOF on the carbon fiber surfaces for improving the interfacial properties of carbo fiber /epoxy composites[J]. Applied Surface Science, 2020, 514: 145870.
|
33 |
YANG X B, JIANG X, HUANG Y D, et al. Building nanoporous metal organic frameworks "Armor" on fibers for high⁃performance composite materials[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5590⁃5599.
|
34 |
ZHANG X, XU J, LIU X Y, et al. Metal organic framework⁃derived three⁃dimensional graphene⁃supported nitrogen⁃doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading[J]. Carbon, 2019, 155: 233⁃242.
|
35 |
ZHENG M, XU L, CHEN C, et al. MOFs and GO⁃based composites as deliberated materials for the adsorption of various water contaminants[J]. Separation and Purification Technology, 2022, 294: 121187.
|
36 |
LI Q Z, SUN Y H, LI G, et al. Enhancing interfacial and electromagnetic interference shielding properties of carbon fiber composites via the hierarchical assembly of the MWNT/MOF interphase[J]. Langmuir, 2022, 38(46): 14277⁃14289.
|
37 |
LIU H S, ZHAO Y, LI N, et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF⁃67 synergistic modification[J]. Journal of Materials Research and Technology, 2019, 8(6): 6289⁃6300.
|
38 |
MA S S, FEI J, YAN J F, et al. Organic⁃inorganic interface enhancement for boosting mechanical and tribological performances of carbon fiber reinforced composites[J]. Journal of Applied Polymer Science, 2024, 141: e54855.
|
39 |
GUO F Y, CHEN J L, WU T Y, et al. Establishment of a novel hierarchical structure based on metal⁃organic framework on the surface of carbon fibers for improving interfacial properties[J]. Journal of Solid State Chemistry, 2022, 314: 123392.
|
40 |
CHEN X, DUMÉE L F. Polyhedral oligomeric silsesquioxane (POSS) Nano⁃Composite separation membranes——A review[J]. Advanced Engineering Materials, 2019, 21(2): 1800667.
|
41 |
LI Z, HU J F, YANG L, et al. Integrated POSS⁃dendrimer nanohybrid materials: Current status and future perspective[J]. Nanoscale, 2020, 12(21): 11395⁃11415.
|
42 |
SHANG Q Q, HU L H, YANG X H, et al. Superhydrophobic cotton fabric coated with tannic acid/polyhedral oligomeric silsesquioxane for highly effective oil/water separation[J]. Progress in Organic Coatings, 2021, 154: 106191.
|
43 |
WANG J, ZAIDI S S A, HASNAIN A, et al. Multitargeting peptide⁃functionalized star⁃shaped copolymers with comblike structure and a POSS⁃Core to effectively transfect endothelial cells[J]. ACS Biomaterials Science & Engineering, 2018, 4(6): 2155⁃2168.
|
44 |
MA L C, ZHU Y Y, WANG M Z, et al. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino⁃terminated POSS on carbon fiber surface[J]. Composites Science and Technology, 2019, 170: 148⁃156.
|
45 |
ZHANG C X, WU G S, JIANG H. Tuning interfacial strength of silicone resin composites by varying the grafting density of octamaleamic acid⁃POSS modified onto carbon fiber[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 555⁃563.
|
46 |
ZHANG R L, GAO B, DU W T, et al. Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 455⁃463.
|
47 |
SHEN W Q, MA R N, DU A, et al. Effect of carbon nanotubes and octa⁃aminopropyl polyhedral oligomeric silsesquioxane on the surface behaviors of carbon fibers and mechanical performance of composites[J]. Applied Surface Science, 2018, 447: 894⁃901.
|
48 |
YANG X B, DU H P, LI S W, et al. Codepositing mussel⁃inspired nanohybrids onto one⁃dimensional fibers under "green" conditions for significantly enhanced surface/interfacial properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4412⁃4420.
|
49 |
WU D L, LIU X D, SHENG Y J, et al. Polyhedral oligomeric silsesquioxane encountering tannic acid: A mild and efficient strategy for interface modification on carbon fiber composites[J]. Langmuir, 2022, 38(27): 8334⁃8341.
|
50 |
WU Q, YANG X, HE J Q, et al. Improved interfacial adhesion of epoxy composites by grafting porous graphene oxide on carbon fiber[J]. Applied Surface Science, 2022, 573: 151605.
|