1 |
钟洪德. 排水管道缺陷内窥检测智能识别系统研究[J]. 城市勘测, 2021(5): 159⁃164.
|
|
ZHONG H D. Research on intelligent recognition system of drainage pipeline defect endoscopic detection[J]. Urban Geotechnical Investigation & Surveying, 2021(5): 159⁃164.
|
2 |
杜预, 郭帅, 潘刚, 等. 国内外排水管道状况评估系统对比分析研究[J]. 中国给水排水, 2021, 37(20): 9⁃15.
|
|
DU Y, GUO S, PAN G, et al. Comparative analysis of pipelines condition assessment protocols at home and abroad[J]. China Water & Wastewater, 2021, 37(20): 9⁃15.
|
3 |
吕兵, 刘玉贤, 叶绍泽, 等. 基于卷积神经网的CCTV视频中排水管道缺陷的智能检测[J]. 测绘通报, 2019(11): 103⁃108.
|
|
LÜ B, LIU Y X, YE S Z, et al. Convolutional⁃neural⁃network⁃based sewer defect detection in videos captured by CCTV[J]. Bulletin of Surveying and Mapping, 2019(11): 103⁃108.
|
4 |
HASSAN S I, DANG L M, MEHMOOD I, et al. Underground sewer pipe condition assessment based on convolutional neural networks[J]. Automation in Construction, 2019, 106: 102849.
|
5 |
方宏远, 马铎, 王念念, 等. 基于融合卷积神经网络的多种类管道病害检测方法[J]. 北京工业大学学报, 2022, 48(6): 561⁃571.
|
|
FANG H Y, MA D, WANG N N, et al. Detection algorithm for multiple underground pipeline diseases based on a fusion convolutional neural network[J]. Journal of Beijing University of Technology, 2022, 48(6): 561⁃571.
|
6 |
MEIJER D, SCHOLTEN L, CLEMENS F, et al. A defect classification methodology for sewer image sets with convolutional neural networks[J]. Automation in Construction, 2019, 104: 281⁃298.
|
7 |
CHEN K F, HU H, CHEN C Z, et al. An intelligent sewer defect detection method based on convolutional neural network[C]//2018 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE, 2018: 1301⁃1306.
|
8 |
陆绮荣, 丁昕, 梁雅雯. 基于改进YOLOX的地下排水管道缺陷识别算法[J]. 电子测量技术, 2022, 45(21): 161⁃168.
|
|
LU Q R, DING X, LIANG Y W. A defect recognition method of the underground drainage pipe based on improved YOLOX algorithm[J]. Electronic Measurement Technology, 2022, 45(21): 161⁃168.
|
9 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 1314⁃1324.
|
10 |
HAURUM J B, Moeslund T B. Sewer⁃ML: A multi⁃label sewer defect classification dataset and benchmark[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13451⁃13462.
|
11 |
王俊岭, 邓玉莲, 李英, 等. 排水管道检测与缺陷识别技术综述[J]. 科学技术与工程, 2020, 20(33): 13520⁃13528.
|
|
WANG J L, DENG Y L, LI Y, et al. A review on detection and defect identification of drainage pipeline[J]. Science Technology and Engineering, 2020, 20(33): 13520⁃13528.
|
12 |
王和平, 安关峰, 谢广永. 《城镇排水管道检测与评估技术规程》(CJJ 181-2012)解读[J].给水排水,2014,40(2):124⁃127.
|
|
WANG H P, AN G F, XIE G Y. Interpretation of technical regulations for testing and evaluation of urban drainage pipelines (CJJ 181-2012)[J]. Water & Wastewater Engineering, 2014, 40(2): 124⁃127.
|
13 |
戴晓峰. 复杂光照条件下舰船图像灰度校正方法[J]. 舰船科学技术, 2021, 43(22): 175⁃177.
|
|
DAI X F. Study on gray scale correction method of ship images under complex light conditions[J]. Ship Science and Technology, 2021, 43(22): 175⁃177.
|
14 |
卢意祺. 城市地下排水管道智能检测系统研究及应用[J]. 中国市政工程, 2021(6): 51⁃55.
|
|
LU Y Q. Research & application of intelligent detection system for urban underground drainage pipeline[J]. China Municipal Engineering, 2021(6): 51⁃55.
|
15 |
马铎, 方宏远, 王念念, 等. 基于自注意力的排水管道缺陷检测方法[J]. 城市勘测, 2022(3): 166⁃169.
|
|
MA D, FANG H Y, WANG N N, et al. A method for defect detection of drainage pipes based on self⁃attention[J]. Urban Geotechnical Investigation & Surveying, 2022(3): 166⁃169.
|
16 |
王新妍. 城市排水管道缺陷检测方法及发展现状探析[J]. 铁道建筑技术, 2020(2): 50⁃53.
|
|
WANG X Y. Review on defect detection methods and development status of urban drainage pipeline[J]. Railway Construction Technology, 2020(2): 50⁃53.
|
17 |
徐源, 翟春艳, 王国良. 基于对抗学习与深度估计的车辆检测系统[J]. 辽宁石油化工大学学报, 2020, 40(3): 83⁃90.
|
|
XU Y, ZHAI C Y, WANG G L. Vehicle detection system based on adversarial learning and depth estimation[J]. Journal of Liaoning Shihua University, 2020, 40(3): 83⁃90.
|