1 |
ALAOUI M E, CHAHIDI L O, ROUGUI M, et al. Evaluation of CFD and machine learning methods on predicting greenhouse microclimate parameters with the assessment of seasonality impact on machine learning performance[J]. Scientific African, 2023, 19: e01578.
|
2 |
李其操, 董自健. 基于GA⁃BP神经网络的温室温度预测研究[J]. 智能计算机与应用, 2023, 13(9): 168⁃171.
|
|
LI Q C, DONG Z J. Greenhouse temperature prediction based on GA⁃BP neural network[J]. Intelligent Computer and Applications, 2023, 13(9): 168⁃171.
|
3 |
杨承磊, 兰玉彬, 王庆雨, 等. 神经网络在温室小气候预测中的应用[J]. 中国农机化学报, 2023, 44(5): 89⁃99.
|
|
YANG C L, LAN Y B, WANG Q Y, et al. Application of neural network in greenhouse microclimate prediction[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89⁃99.
|
4 |
高国祥, 王仰仁, 田文艳, 等. 基于实时监测数据的温室墒情预测研究[J]. 节水灌溉, 2020(10): 34⁃40.
|
|
GAO G X, WANG Y R, TIAN W Y, et al. Research on soil moisture content prediction of greenhouse based on real⁃time monitoring data[J]. Water Saving Irrigation, 2020(10): 34⁃40.
|
5 |
ZHANG Y, XU L H, ZHU X H, et al. Thermal environment model construction of Chinese solar greenhouse based on temperature⁃wave interaction[J]. Energy and Buildings, 2023, 279: 112648.
|
6 |
BAGLIVO C, MAZZEO D, PANICO S, et al. Data from a dynamic simulation in a free⁃floating and continuous regime of a solar greenhouse modelled in TRNSYS 17 considering simultaneously different thermal phenomena[J]. Data in Brief, 2020, 33: 106339.
|
7 |
SABERIAN A, SAJADIYE S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation[J]. Renewable Energy, 2019, 138: 722⁃737.
|
8 |
HE F, MA C W. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis[J]. Computers and Electronics in Agriculture, 2010, 71(Suppl 1): S19⁃S23.
|
9 |
YU H H, CHEN Y Y, HASSAN S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J]. Computers and Electronics in Agriculture, 2016, 122: 94⁃102.
|
10 |
YANG Y B, ZHAO Y. Prevailing wind direction forecasting for natural ventilation djustment in greenhouses based on LE⁃SVM[J]. Energy Procedia, 2012, 16(Part A): 252⁃258.
|
11 |
DING J T, TU H Y, ZANG Z L, et al. Precise control and prediction of the greenhouse growth environment of Dendrobium candidum[J]. Computers and Electronics in Agriculture, 2018, 151: 453⁃459.
|
12 |
邹伟东, 张百海, 姚分喜, 等. 基于改进型极限学习机的日光温室温湿度预测与验证[J]. 农业工程学报, 2015, 31(24): 194⁃200.
|
|
ZOU W D, ZHANG B H, YAO F X, et al. Verification and forecasting of temperature and humidity in solar greenhouse based on improved extreme learning machine algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 194⁃200.
|
13 |
LI B, WANG H L. Multi⁃objective sparrow search algorithm: A novel algorithm for solving complex multi⁃objective optimisation problems[J]. Expert Systems with Applications, 2022, 210: 118414.
|
14 |
那新宇, 余华鹏, 金鑫, 等. 基于ISSA的多变量ORVFL网络自适应预测控制[J]. 辽宁石油化工大学学报, 2023, 43(1): 80⁃88.
|
|
NA X Y, YU H P, JIN X, et al. Multivariable ORVFL network adaptive predictive control based on ISSA[J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 80⁃88.
|
15 |
崔俊勇, 李奇安. 改进WLSSVM模型在汽油干点预测中的应用[J]. 辽宁石油化工大学学报, 2023, 43(1): 67⁃72.
|
|
CUI J Y, LI Q A. Application of improved WLSSVM model in the prediction of gasoline dry point at the top of atmospheric Towe[J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 67⁃72.
|
16 |
郭丽莹, 李文娜, 郎宪明. SKPCA⁃LSSVM模型在汽油干点预测中的应用[J].辽宁石油化工大学学报, 2022, 42(3): 74⁃78.
|
|
GUO L Y, LI W N, LANG X M. Application of SKPCA⁃LSSVM model in gasoline dry point prediction[J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 74⁃78.
|
17 |
MAHMOOD F, GOVINDAN R, BERMAK A, et al. Energy utilization assessment of a semi⁃closed greenhouse using data⁃driven model predictive control[J]. Journal of Cleaner Production, 2021, 324: 129172.
|