| 1 | 
																						 
											 TANG H Q, ZHU J T, TANG Z Y, et al. Al⁃doped Li2ZnTi3O8 as an effective anode material for lithium⁃ion batteries with good rate capabilities[J]. Journal of Electroanalytical Chemistry, 2014, 731: 60⁃66.
											 											 | 
										
																													
																						| 2 | 
																						 
											 CHEN C, AI C C, LIU X Y, et al. Advanced electrochemical properties of Ce⁃modified Li2ZnTi3O8 anode material for lithium⁃ion batteries[J]. Electrochimica Acta, 2017, 227: 285⁃293.
											 											 | 
										
																													
																						| 3 | 
																						 
											 冯莲晶,王利娟.Sn4P3⁃G@C负极在锂离子电池中的应用[J].石油化工高等学校学报,2023,36(1):66⁃73.
											 											 | 
										
																													
																						 | 
																						 
											 FENG L J, WANG L J. Applications of Sn4P3‐G@C Anodes in Li‐ion Batteries[J].Journal of Petrochemical Universities,2023,36(1):66⁃73.
											 											 | 
										
																													
																						| 4 | 
																						 
											 QIE F C, TANG Z Y. Cu⁃doped Li2ZnTi3O8 anode material with improved electrochemical performance for lithium⁃ion batteries[J]. Materials Express, 2014, 4(3): 221⁃227.
											 											 | 
										
																													
																						| 5 | 
																						 
											 LI Y Y, DU C Q, LIU J, et al. Synthesis and characterization of Li2Zn0.6Cu0.4Ti3O8 anode material via a sol⁃gel method[J]. Electrochimica Acta, 2015, 167: 201⁃206.
											 											 | 
										
																													
																						| 6 | 
																						 
											 REN Y R, LU P, HUANG X B, et al. Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 125⁃131.
											 											 | 
										
																													
																						| 7 | 
																						 
											 严雪, 李佳. 核壳结构的锂离子电池硅锗负极材料电化学性能的理论研究[J]. 当代化工, 2018, 47(9): 1764⁃1766.
											 											 | 
										
																													
																						 | 
																						 
											 YAN X, LI J. Computational study on electrochemical performance of Si⁃Ge core⁃shell structure as lithium battery anode[J]. Contemporary Chemical Industry, 2018, 47(9): 1764⁃1766.
											 											 | 
										
																													
																						| 8 | 
																						 
											 刘浪浪, 问娟娟. 锂离子电池新型负极材料的研究进展[J]. 当代化工, 2014, 43(12): 2690⁃2692.
											 											 | 
										
																													
																						 | 
																						 
											 LIU L L, WEN J J. Research progress in anode materials for lithium ion batteries[J]. Contemporary Chemical Industry, 2014, 43(12): 2690⁃2692.
											 											 | 
										
																													
																						| 9 | 
																						 
											 YILDIZ S, ŞAHAN H. In situ synthesis of reduced graphite oxide⁃Li2ZnTi3O8 composite as a high rate anode material for lithium⁃ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A2002⁃A2012.
											 											 | 
										
																													
																						| 10 | 
																						 
											 TANG H Q, CHEN C, LIU T, et al. Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N⁃doped carbon⁃coated Li2ZnTi3O8 anode material[J]. Journal of Electroanalytical Chemistry, 2020, 858: 113789⁃113797.
											 											 | 
										
																													
																						| 11 | 
																						 
											 XU Y X, HONG Z S, XIA L C, et al. One step sol⁃gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium⁃ion storage properties[J]. Electrochimica Acta, 2013, 88: 74⁃78.
											 											 | 
										
																													
																						| 12 | 
																						 
											 CHEN W, LIANG H F, SHAO L Y, et al. Observation of the structural changes of sol⁃gel formed Li2MnTi3O8 during electrochemical reaction by in⁃situ and ex⁃situ studies[J]. Electrochimica Acta, 2015, 152: 187⁃194.
											 											 | 
										
																													
																						| 13 | 
																						 
											 YAO L L, NING Z Y, GUO S T, et al. On the sol⁃gel synthesis mechanism of nanostructured Li3.95La0.05Ti4.95Ag0.05O12 with enhanced electrochemical performance for lithium ion battery[J]. Ceramics International, 2017, 43(3): 3393⁃3400.
											 											 | 
										
																													
																						| 14 | 
																						 
											 LIU T, TANG H Q, ZAN L X, et al. Comparative study of Li2ZnTi3O8 anode material with good high rate capacities prepared by solid state, molten salt and sol⁃gel methods[J]. Journal of Electroanalytical Chemistry, 2016, 771: 10⁃16.
											 											 | 
										
																													
																						| 15 | 
																						 
											 LI Z F, LI H, CUI Y H, et al. Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery[J]. Journal of Alloys and Compounds, 2017, 692: 131⁃139.
											 											 | 
										
																													
																						| 16 | 
																						 
											 TANG H Q, ZHOU Y K, ZAN L X, et al. Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries[J]. Electrochimica Acta, 2016, 191: 887⁃894.
											 											 | 
										
																													
																						| 17 | 
																						 
											 张毅. 高倍率锂离子电池Li4Ti5O12材料的制备与改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
											 											 | 
										
																													
																						| 18 | 
																						 
											 BORGHOLS W J H, WAGEMAKE M, LAFONT U, et al. Size Effects in the Li4+ xTi5O12 spinel[J]. Journal of the American Chemical Society, 2009. 131(49): 17786⁃17792.
											 											 | 
										
																													
																						| 19 | 
																						 
											 GE H, LI N, LI D Y, et al. Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V[J]. Electrochemistry Communications, 2008, 10(5): 719⁃722.
											 											 | 
										
																													
																						| 20 | 
																						 
											 杨建文, 钟晖, 钟海云, 等. Li4Ti5O12的合成及其影响因素[J]. 中南大学学报(自然科学版), 2005, 36(1): 1672⁃7207.
											 											 | 
										
																													
																						 | 
																						 
											 YANG J W, ZHONG H, ZHONG H Y, et al. Synthesis and influential factors of Li4Ti5O12[J]. Journal of Central South University(Science and Technology), 2005, 36(1): 1672⁃7207.
											 											 | 
										
																													
																						| 21 | 
																						 
											 WANG L J, MENG Z H, WANG H W, et al. Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode[J]. Ceramics International, 2016, 42(15): 16872⁃16881.
											 											 | 
										
																													
																						| 22 | 
																						 
											 LIU T, TANG H Q, LIU J Y, et al. Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent[J]. Electrochimica Acta, 2018, 259: 28⁃35.
											 											 | 
										
																													
																						| 23 | 
																						 
											 TANG H Q, ZAN L X, TANG Z Y. Predominant electronic conductivity of Li2ZnTi3O8 anode material prepared in nitrogen for rechargeable lithium⁃ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 823: 269⁃277.
											 											 | 
										
																													
																						| 24 | 
																						 
											 MENG Z H, WANG S, WANG L J, et al. Synthesis of high performance N⁃doped carbon coated Li2ZnTi3O8 via a NTA⁃assisted solid⁃state route[J]. Dalton Transations, 2018, 47(8): 2711⁃2718.
											 											 | 
										
																													
																						| 25 | 
																						 
											 HONG Z S, LAN T B, ZHENG Y Z, et al. Spinel Li2MTi3O8 (M=Mg, Mg0.5Zn0.5) nanowires with enhanced electrochemical lithium storage[J]. Functional Materials Letters, 2011, 4(1): 65⁃69.
											 											 | 
										
																													
																						| 26 | 
																						 
											 CHEN W, DU R H, REN W J, et al. Solid state synthesis of Li2Co0.5Cu0.5Ti3O8 and Li2CoTi3O8 and their comparative lithium storage properties[J]. Ceramics International, 2014, 40(8): 13757⁃13761.
											 											 | 
										
																													
																						| 27 | 
																						 
											 LI X, XIAO Q, LIU B, et al. One⁃step solution⁃combustion synthesis of complex spinel titanate flake particles with enhanced lithium⁃storage properties[J]. Journal of Power Sources, 2015, 273: 128⁃135.
											 											 | 
										
																													
																						| 28 | 
																						 
											 HONG Z S, ZHENG X Z, DING X K, et al. Complex spinel titanate nanowires for a high rate lithium⁃ion battery[J]. Energy & Environmental Science, 2011, 4(5): 1886⁃1891.
											 											 | 
										
																													
																						| 29 | 
																						 
											 YANG H, ZHU H L, QI Y X, et al. Optimizing the cycling life and high⁃rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid[J]. Journal of Materials Science, 2020, 55(32): 15538⁃15550.
											 											 | 
										
																													
																						| 30 | 
																						 
											 QIU L Y, LAI X Q, WANG F F, et al. Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li⁃ion battery[J]. Ceramics International, 2021, 47(14): 19455⁃19463.
											 											 | 
										
																													
																						| 31 | 
																						 
											 TANG H Q, TANG Z Y. Effect of different carbon sources on electrochemical properties of Li2ZnTi3O8/C anode material in lithium⁃ion batteries[J]. Journal of Alloys and Compounds, 2014, 613: 267⁃274.
											 											 | 
										
																													
																						| 32 | 
																						 
											 TANG H Q, ZAN L X, MAO W F, et al. Improved rate performance of amorphous carbon coated lithium zinc titanate anode material with alginic acid as carbon precursor and particle size controller[J]. Journal of Electroanalytical Chemistry, 2015, 751: 57⁃64.
											 											 | 
										
																													
																						| 33 | 
																						 
											 YANG H, PARK J, KIM C S, et al. Uniform surface modification of Li2ZnTi3O8 by liquated Na2MoO4 to boost electrochemical performance[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43603⁃43613.
											 											 |