1 |
TANG H Q, ZHU J T, TANG Z Y, et al. Al⁃doped Li2ZnTi3O8 as an effective anode material for lithium⁃ion batteries with good rate capabilities[J]. Journal of Electroanalytical Chemistry, 2014, 731: 60⁃66.
|
2 |
CHEN C, AI C C, LIU X Y, et al. Advanced electrochemical properties of Ce⁃modified Li2ZnTi3O8 anode material for lithium⁃ion batteries[J]. Electrochimica Acta, 2017, 227: 285⁃293.
|
3 |
冯莲晶,王利娟.Sn4P3⁃G@C负极在锂离子电池中的应用[J].石油化工高等学校学报,2023,36(1):66⁃73.
|
|
FENG L J, WANG L J. Applications of Sn4P3‐G@C Anodes in Li‐ion Batteries[J].Journal of Petrochemical Universities,2023,36(1):66⁃73.
|
4 |
QIE F C, TANG Z Y. Cu⁃doped Li2ZnTi3O8 anode material with improved electrochemical performance for lithium⁃ion batteries[J]. Materials Express, 2014, 4(3): 221⁃227.
|
5 |
LI Y Y, DU C Q, LIU J, et al. Synthesis and characterization of Li2Zn0.6Cu0.4Ti3O8 anode material via a sol⁃gel method[J]. Electrochimica Acta, 2015, 167: 201⁃206.
|
6 |
REN Y R, LU P, HUANG X B, et al. Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 125⁃131.
|
7 |
严雪, 李佳. 核壳结构的锂离子电池硅锗负极材料电化学性能的理论研究[J]. 当代化工, 2018, 47(9): 1764⁃1766.
|
|
YAN X, LI J. Computational study on electrochemical performance of Si⁃Ge core⁃shell structure as lithium battery anode[J]. Contemporary Chemical Industry, 2018, 47(9): 1764⁃1766.
|
8 |
刘浪浪, 问娟娟. 锂离子电池新型负极材料的研究进展[J]. 当代化工, 2014, 43(12): 2690⁃2692.
|
|
LIU L L, WEN J J. Research progress in anode materials for lithium ion batteries[J]. Contemporary Chemical Industry, 2014, 43(12): 2690⁃2692.
|
9 |
YILDIZ S, ŞAHAN H. In situ synthesis of reduced graphite oxide⁃Li2ZnTi3O8 composite as a high rate anode material for lithium⁃ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A2002⁃A2012.
|
10 |
TANG H Q, CHEN C, LIU T, et al. Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N⁃doped carbon⁃coated Li2ZnTi3O8 anode material[J]. Journal of Electroanalytical Chemistry, 2020, 858: 113789⁃113797.
|
11 |
XU Y X, HONG Z S, XIA L C, et al. One step sol⁃gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium⁃ion storage properties[J]. Electrochimica Acta, 2013, 88: 74⁃78.
|
12 |
CHEN W, LIANG H F, SHAO L Y, et al. Observation of the structural changes of sol⁃gel formed Li2MnTi3O8 during electrochemical reaction by in⁃situ and ex⁃situ studies[J]. Electrochimica Acta, 2015, 152: 187⁃194.
|
13 |
YAO L L, NING Z Y, GUO S T, et al. On the sol⁃gel synthesis mechanism of nanostructured Li3.95La0.05Ti4.95Ag0.05O12 with enhanced electrochemical performance for lithium ion battery[J]. Ceramics International, 2017, 43(3): 3393⁃3400.
|
14 |
LIU T, TANG H Q, ZAN L X, et al. Comparative study of Li2ZnTi3O8 anode material with good high rate capacities prepared by solid state, molten salt and sol⁃gel methods[J]. Journal of Electroanalytical Chemistry, 2016, 771: 10⁃16.
|
15 |
LI Z F, LI H, CUI Y H, et al. Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery[J]. Journal of Alloys and Compounds, 2017, 692: 131⁃139.
|
16 |
TANG H Q, ZHOU Y K, ZAN L X, et al. Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries[J]. Electrochimica Acta, 2016, 191: 887⁃894.
|
17 |
张毅. 高倍率锂离子电池Li4Ti5O12材料的制备与改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
18 |
BORGHOLS W J H, WAGEMAKE M, LAFONT U, et al. Size Effects in the Li4+ xTi5O12 spinel[J]. Journal of the American Chemical Society, 2009. 131(49): 17786⁃17792.
|
19 |
GE H, LI N, LI D Y, et al. Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V[J]. Electrochemistry Communications, 2008, 10(5): 719⁃722.
|
20 |
杨建文, 钟晖, 钟海云, 等. Li4Ti5O12的合成及其影响因素[J]. 中南大学学报(自然科学版), 2005, 36(1): 1672⁃7207.
|
|
YANG J W, ZHONG H, ZHONG H Y, et al. Synthesis and influential factors of Li4Ti5O12[J]. Journal of Central South University(Science and Technology), 2005, 36(1): 1672⁃7207.
|
21 |
WANG L J, MENG Z H, WANG H W, et al. Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode[J]. Ceramics International, 2016, 42(15): 16872⁃16881.
|
22 |
LIU T, TANG H Q, LIU J Y, et al. Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent[J]. Electrochimica Acta, 2018, 259: 28⁃35.
|
23 |
TANG H Q, ZAN L X, TANG Z Y. Predominant electronic conductivity of Li2ZnTi3O8 anode material prepared in nitrogen for rechargeable lithium⁃ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 823: 269⁃277.
|
24 |
MENG Z H, WANG S, WANG L J, et al. Synthesis of high performance N⁃doped carbon coated Li2ZnTi3O8 via a NTA⁃assisted solid⁃state route[J]. Dalton Transations, 2018, 47(8): 2711⁃2718.
|
25 |
HONG Z S, LAN T B, ZHENG Y Z, et al. Spinel Li2MTi3O8 (M=Mg, Mg0.5Zn0.5) nanowires with enhanced electrochemical lithium storage[J]. Functional Materials Letters, 2011, 4(1): 65⁃69.
|
26 |
CHEN W, DU R H, REN W J, et al. Solid state synthesis of Li2Co0.5Cu0.5Ti3O8 and Li2CoTi3O8 and their comparative lithium storage properties[J]. Ceramics International, 2014, 40(8): 13757⁃13761.
|
27 |
LI X, XIAO Q, LIU B, et al. One⁃step solution⁃combustion synthesis of complex spinel titanate flake particles with enhanced lithium⁃storage properties[J]. Journal of Power Sources, 2015, 273: 128⁃135.
|
28 |
HONG Z S, ZHENG X Z, DING X K, et al. Complex spinel titanate nanowires for a high rate lithium⁃ion battery[J]. Energy & Environmental Science, 2011, 4(5): 1886⁃1891.
|
29 |
YANG H, ZHU H L, QI Y X, et al. Optimizing the cycling life and high⁃rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid[J]. Journal of Materials Science, 2020, 55(32): 15538⁃15550.
|
30 |
QIU L Y, LAI X Q, WANG F F, et al. Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li⁃ion battery[J]. Ceramics International, 2021, 47(14): 19455⁃19463.
|
31 |
TANG H Q, TANG Z Y. Effect of different carbon sources on electrochemical properties of Li2ZnTi3O8/C anode material in lithium⁃ion batteries[J]. Journal of Alloys and Compounds, 2014, 613: 267⁃274.
|
32 |
TANG H Q, ZAN L X, MAO W F, et al. Improved rate performance of amorphous carbon coated lithium zinc titanate anode material with alginic acid as carbon precursor and particle size controller[J]. Journal of Electroanalytical Chemistry, 2015, 751: 57⁃64.
|
33 |
YANG H, PARK J, KIM C S, et al. Uniform surface modification of Li2ZnTi3O8 by liquated Na2MoO4 to boost electrochemical performance[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43603⁃43613.
|