1 |
LIU P K, HAN X. Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: A novel framework[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9485⁃9503.
|
2 |
PIVOVAR B, RUSTAGI N, SATYAPAL S. Hydrogen at scale (H2@Scale): Key to a clean, economic, and sustainable energy system[J]. The Electrochemical Society Interface, 2018, 27(1): 47⁃52.
|
3 |
MAJUMDAR A, DEUTCH J M, PRASHER R S, et al. A framework for a hydrogen economy[J]. Joule, 2021, 5(8): 1905⁃1908.
|
4 |
BRANDON N P, KURBAN Z. Clean energy and the hydrogen economy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2098): 20160400.
|
5 |
IDRISS H. Hydrogen production from water: Past and present[J]. Current Opinion in Chemical Engineering, 2020, 29: 74⁃82.
|
6 |
MARTINO M, RUOCCO C, MELONI E, et al. Main hydrogen production processes: An overview[J]. Catalysts, 2021, 11(5): 547.
|
7 |
王琼瑶, 陈宏东, 周正彪. 变压吸附(PSA)分离技术在炼化厂尾气回收中的应用[J]. 当代化工, 2020, 49(4): 676⁃679.
|
8 |
陈保华. 富氢气体梯级回收技术的工业应用[J]. 石油炼制与化工, 2022, 53(12): 102⁃105.
|
9 |
王斯晗, 张瑀健. 天然气蒸汽重整制氢技术研究现状[J]. 工业催化, 2016, 24(4): 26⁃30.
|
10 |
SANZ O, VELASCO I, PÉREZ⁃MIQUEO I, et al. Intensification of hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5250⁃5259.
|
11 |
李佩佩, 翟燕萍, 王先鹏, 等. 浅谈氢气提纯方法的选取[J]. 天然气化工(C1化学与化工), 2020, 45(3): 115⁃119.
|
12 |
LUBERTI M, AHN H. Review of polybed pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2022, 47(20): 10911⁃10933.
|
13 |
YANG J, LEE C H, CHANG J W. Separation of hydrogen mixtures by a two⁃bed pressure swing adsorption process using zeolite 5A[J]. Industrial & Engineering Chemistry Research, 1997, 36(7): 2789⁃2798.
|
14 |
何芬. 变压吸附分离气体技术的研究进展[J]. 山东工业技术, 2014(23): 54.
|
15 |
VOSS C. Applications of pressure swing adsorption technology[J]. Adsorption, 2005, 11(1): 527⁃529.
|
16 |
ZHU X C, LI S, SHI Y X, et al. Recent advances in elevated⁃temperature pressure swing adsorption for carbon capture and hydrogen production[J]. Progress in Energy and Combustion Science, 2019, 75: 100784.
|
17 |
RICHARD M A, BÉNARD P, CHAHINE R. Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: Modified Dubinin⁃Astakhov model[J]. Adsorption, 2009, 15(1): 43⁃51.
|
18 |
MONSALVO M A, SHAPIRO A A. Study of high⁃pressure adsorption from supercritical fluids by the potential theory[J]. Fluid Phase Equilibria, 2009, 283(1⁃2): 56⁃64.
|
19 |
OWENS D J, EBNER A D, RITTER J A. Equilibrium theory analysis of a pressure swing adsorption cycle utilizing a favorable langmuir isotherm: Approach to periodic behavior[J]. Industrial & Engineering Chemistry Research, 2012, 51(41): 13454⁃13462.
|
20 |
WALDRON W E, SIRCAR S. Parametric study of a pressure swing adsorption process[J]. Adsorption, 2000, 6(2): 179⁃188.
|
21 |
PARK Y, JU Y, PARK D, et al. Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2[J]. Chemical Engineering Journal, 2016, 292: 348⁃365.
|
22 |
ZHANG R Y, SHEN Y H, TANG Z L, et al. A review of numerical research on the pressure swing adsorption process[J]. Processes, 2022, 10(5): 812.
|
23 |
KNAEBEL S P, KO D, BIEGLER L T. Simulation and optimization of a pressure swing adsorption system: Recovering hydrogen from methane[J]. Adsorption, 2005, 11(1): 615⁃620.
|
24 |
SUN K, YANG T Q, MA S, et al. Hydrogen purification performance of pressure swing adsorption based on Cu⁃BTC/zeolite 5A layered bed[J]. Journal of Wuhan University of Technology⁃Mater Sci Ed, 2022, 37(5): 815⁃822.
|
25 |
张超, 陈健, 殷文华, 等. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308⁃321.
|
26 |
李成龙, 肖金生, 皮埃尔·贝纳德, 等. 层状床变压吸附氢气纯化性能的优化[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(4): 753⁃759.
|
27 |
钮朝阳, 江南, 沈圆辉, 等. 快速变压吸附制氢工艺的模拟与分析[J]. 化工学报, 2021, 72(2): 1036⁃1046.
|
28 |
XIAO J S, MEI A, TAO W, et al. Hydrogen purification performance optimization of vacuum pressure swing adsorption on different activated carbons[J]. Energies, 2021, 14(9): 2450.
|
29 |
ZHANG C, SHEN Y H, ZHANG D H, et al. Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC[J]. Energy, 2022, 257: 124715.
|
30 |
CHICANO J, DION C T, PASAOGULLARI U, et al. Simulation of 12⁃bed vacuum pressure⁃swing adsorption for hydrogen separation from methanol⁃steam reforming off⁃gas[J]. International Journal of Hydrogen Energy, 2021, 46(56): 28626⁃28640.
|
31 |
LI B J, HE G H, JIANG X B, et al. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Frontiers of Chemical Science and Engineering, 2016, 10(2): 255⁃264.
|
32 |
WU Q M, LUAN H M, XIAO F S. Theoretical design for zeolite synthesis[J]. Science China Chemistry, 2022, 65(9): 1683⁃1690.
|
33 |
KRÓL M. Natural vs. synthetic zeolites[J]. Crystals, 2020, 10(7): 622.
|
34 |
吴春洋, 王知微, 赵莹, 等. 沸石分子筛绿色高效合成的研究进展[J]. 化学试剂, 2022, 44(11): 1543⁃1550.
|
35 |
张钢强, 孙朋涛, 刘书缘, 等. 变压吸附制氢的研究进展[J]. 石油化工, 2022, 51(4): 498⁃502.
|
36 |
马硕. 氢气纯化变压吸附层状床的性能优化[D]. 武汉: 武汉理工大学, 2019.
|
37 |
杨志远, 王德超, 刘娇萍. 变压吸附分离CH4/N2用沸石分子筛的研究进展[J]. 洁净煤技术, 2015, 21(6): 109⁃113.
|
38 |
DJEFFAL N, BENBOUZID M, BOUKOUSSA B, et al. CO2 adsorption properties of ion⁃exchanged zeolite Y prepared from natural clays[J]. Materials Research Express, 2017, 4(3): 035504.
|
39 |
郝小非. 改性斜发沸石分子筛制备及其CH4/N2吸附分离性能研究[D]. 武汉: 中国地质大学, 2020.
|
40 |
LOPES F V S, GRANDE C A, RIBEIRO A M, et al. Effect of ion exchange on the adsorption of steam methane reforming off⁃gases on zeolite 13X[J]. Journal of Chemical & Engineering Data, 2010, 55(1): 184⁃195.
|
41 |
高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展[J]. 辽宁化工, 2020, 49(11): 1389⁃1394.
|
42 |
竹涛, 韩一伟, 王若男, 等. 低浓度煤层气双塔真空变压吸附实验[J]. 环境工程, 2020, 38(10): 156⁃161.
|
43 |
SHAMSUDIN I K, ABDULLAH A, IDRIS I, et al. Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon[J]. Fuel, 2019, 253: 722⁃730.
|
44 |
ARAMI⁃NIYA A, DAUD W M A W, MJALLI F S. Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 197⁃203.
|
45 |
BYAMBA⁃OCHIR N, SHIM W G, BALATHANIGAIMANI M S, et al. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation[J]. Applied Surface Science, 2016, 379: 331⁃337.
|
46 |
ZHANG B, HUANG Z R, LIU P, et al. Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2[J]. Korean Journal of Chemical Engineering, 2022, 39(3): 724⁃735.
|
47 |
袁英, 陈禹嘉, 贺安平, 等. 碳分子筛吸附剂的制备及其应用研究进展[J]. 天然气化工(C1化学与化工), 2022, 47(1): 24⁃32.
|
48 |
把余德, 周世奇, 敬方梨, 等. 铁离子改性碳分子筛对氮气/甲烷分离性能的研究[J]. 无机盐工业, 2023, 55(1): 144⁃150.
|
49 |
DEMIRAL H, DEMIRAL İ. Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition[J]. Advanced Powder Technology, 2018, 29(12): 3033⁃3039.
|
50 |
王洪亮, 胡宏杰, 刘红召, 等. 甲烷/氮气分离用碳分子筛的制备[J]. 应用化工, 2020, 49(4): 819⁃823.
|
51 |
YANG Z Y, WANG D C, MENG Z Y, et al. Adsorption separation of CH4/N2 on modified coal⁃based carbon molecular sieve[J]. Separation and Purification Technology, 2019, 218: 130⁃137.
|
52 |
贺彩艳, 肖宇情, 李申慧, 等. 固体NMR研究MOFs吸附和分离过程中的主客体相互作用[J]. 波谱学杂志, 2023, 40(2): 192⁃206.
|
53 |
HERM Z R, SWISHER J A, SMIT B, et al. Metal⁃organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture[J]. Journal of the American Chemical Society, 2011, 133(15): 5664⁃5667.
|
54 |
ZHANG X, ZHENG Q R, HE H Z. Multicomponent adsorptive separation of CO2, CH4, N2, and H2 over M⁃MOF⁃74 and AX⁃21@M⁃MOF⁃74 composite adsorbents[J]. Microporous and Mesoporous Materials, 2022, 336: 111899.
|
55 |
王志强, 陈彬剑, 焦健. 改性活性氧化铝的二氧化碳吸附性能研究[J]. 煤气与热力, 2022, 42(12): 10⁃16.
|
56 |
AUTA M, AMAT DARBIS N D, MOHD DIN A T, et al. Fixed⁃bed column adsorption of carbon dioxide by sodium hydroxide modified activated alumina[J]. Chemical Engineering Journal, 2013, 233: 80⁃87. (编辑 宋官龙)
|