辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2018, Vol. 38 ›› Issue (02): 90-93.DOI: 10.3969/j.issn.1672-6952.2018.02.018

• 管理与数理科学 • 上一篇    下一篇

具有竞争种群的Lotka-Volterra 微分代数模型的复杂性分析

牛 宏1,王一丹1,王 贺2   

  1. (1.辽宁石油化工大学 理学院,辽宁 抚顺 113001; 2.辽宁石油化工大学 化学化工与环境学部,辽宁 抚顺 113001)
  • 收稿日期:2017-07-26 修回日期:2017-10-31 出版日期:2018-04-26 发布日期:2018-04-25
  • 作者简介:牛宏(1979-),女,博士,讲师,从事非线性系统稳定性和非线性系统控制方面的研究;E-mail:13942393197@163.com。
  • 基金资助:
    国家自然科学基金青年科学基金项目(61603168)

Complexity Analysis of Lotka-Volterra Differential Algebraic Model with Competitive Population

Niu Hong1Wang Yidan1Wang He2   

  1. 1.School of Science,Liaoning Shihua University,Fushun Liaoning 113001,China;  2.College of Chemistry, Chemical Engineering and Environmental Engineering,Liaoning Shihua University,Fushun Liaoning 113001,China)
  • Received:2017-07-26 Revised:2017-10-31 Published:2018-04-26 Online:2018-04-25

摘要: 研究了Lotka-Volterra食饵-捕食生物模型,考虑当捕食者数量过多时引入与捕食者形成一种简单竞争关系且不具有捕食食饵能力的物种来抑制捕食者的增长,根据守恒关系建立微分代数生物系统模型。然后,应用微分代数系统的稳定性分析方法和相关判据,讨论参数在一定范围内变化时生物模型稳定性问题。最后,结合分析结果应用Matlab软件对模型进行数值仿真。仿真结果表明,系统在参数取某一定值时出现极限环,所建立的微分代数生物系统模型产生复杂的非线性动力学现象。

关键词: 微分代数模型, 极限环, 稳定性, Lotka-Volterra食饵-捕食系统

Abstract: The Lotka-Volterra predator-prey biological model is mainly studied in this paper by introducing the new population which has no ability to prey the other population to form a simple competition between predator and prey when the number of predators is excessive. Based on above condition, differential algebraic biological model is established according to the conservation. Then, the stability of biological model is discussed when the parameters change in a certain range by applying the stability analysis method and the related criteria of differential algebraic system. Finally, the model is the simulated numerically by considering the results of the analysis and using the Matlab software, and the simulation results show that the system has a limit cycle when the parameters vary a certain value, which proved that the complex nonlinear phenomena exist in the differential algebraic biological model.

Key words: Differential algebraic model, Limit cycle, Stability, Lotka-Volterra predator-prey system

引用本文

牛 宏,王一丹,王 贺. 具有竞争种群的Lotka-Volterra 微分代数模型的复杂性分析[J]. 辽宁石油化工大学学报, 2018, 38(02): 90-93.

Niu Hong,Wang Yidan,Wang He. Complexity Analysis of Lotka-Volterra Differential Algebraic Model with Competitive Population[J]. Journal of Liaoning Petrochemical University, 2018, 38(02): 90-93.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3969/j.issn.1672-6952.2018.02.018

               https://journal.lnpu.edu.cn/CN/Y2018/V38/I02/90