辽宁石油化工大学学报 ›› 2013, Vol. 33 ›› Issue (2): 56-59.

• 化工机械与计算机 • 上一篇    下一篇

基于MPCA-MHMT的多阶段间歇过程监控研究

刘伟,苏成利*   

  1. (辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001)
  • 收稿日期:2012-12-12 出版日期:2013-06-25 发布日期:2017-07-14
  • 作者简介:刘伟(1986-),男,辽宁丹市东,在读硕士
  • 基金资助:
    国家自然科学基金(61203021);国家863计划项目(2007AA04Z162);辽宁省科技攻关项目(2011216011)。

MultiWay Batch Process Monitoring Based on MPCAMHMT

LIU Wei, SU Chengli*   

  1. School of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China
  • Received:2012-12-12 Published:2013-06-25 Online:2017-07-14

摘要: 为了克服多阶段间歇过程监控只针对时间尺度从而导致误报率过高的缺陷,建立了捕捉实际测量数
据的持续性和聚集性的隐马尔科夫树模型。该方法减少了信号扭曲从而更好地提取影响过程的系统变量,解决离
散小波变换不具有平移不变性的问题。对展开结构进行简单的修改,把时域扩展到时间灢频率域中,提取了历史数据
的主要特征,对多阶段间歇过程进行了有效监控。利用提出的方法对青霉素发酵过程进行监控,验证了该方法比传
统方法更为切实可行。

关键词: 间歇过程 , 主元分析 , 隐马尔可夫树 , 在线监控

Abstract: In order to overcome the misclassification problems, multiway batch process monitoring based on the waveletbased multihidden Markov model tree (MHMT) was developed. MHMT can capture the clustering and persistence of the statistical characteristics for practical measured data. This approach provides less signal distortion and better understanding of the principal source of the system variability affecting the process. It solved the problem that discrete wavelet transform(DWT)can not obtain shiftinvariance,and then made simple modifications of the expansion structure, the method using stochastic model analysis the time domain expanded to timefrequency domain and extracted the main characteristics of the historical data, it is a good way to solve the multiway batch process monitoring problem. The proposed method was used to evaluate the industrial penicillin fermentation process data,the results clearly demonstrated the power and advantages of the proposed method in comparison with conventional MPCA method.

Key words: Batch process , Principal component analysis ,  Hidden Markov tree , Online monitoring

引用本文

刘伟,苏成利. 基于MPCA-MHMT的多阶段间歇过程监控研究[J]. 辽宁石油化工大学学报, 2013, 33(2): 56-59.

LIU Wei, SU Chengli. MultiWay Batch Process Monitoring Based on MPCAMHMT[J]. Journal of Liaoning Petrochemical University, 2013, 33(2): 56-59.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2013/V33/I2/56