1 |
甘利灯, 张昕, 王峣钧, 等. 从勘探领域变化看地震储层预测技术现状和发展趋势[J]. 石油地球物理勘探, 2018, 53(1): 214⁃225.
|
|
GAN L D, ZHANG X, WANG Y J, et al. Current status and development trends of seismic reservoir prediction viewed from the exploration industry[J]. Oil Geophysical Prospecting, 2018, 53(1): 214⁃225.
|
2 |
潘建国, 李劲松, 王宏斌, 等. 深层⁃超深层碳酸盐岩储层地震预测技术研究进展与趋势[J]. 中国石油勘探, 2020, 25(3): 156⁃166.
|
|
PAN J G, LI J S, WANG H B, et al. Research progress and trend of seismic prediction technology for deep and ultra⁃deep carbonate reservoir[J]. China Petroleum Exploration, 2020, 25(3): 156⁃166.
|
3 |
李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669⁃678.
|
|
LI Y, KANG Z J, XUE Z J, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669⁃678.
|
4 |
SHARIFI J, MOGHADDAS N H, SABERI M R, et al. A novel approach for fracture porosity estimation of carbonate reservoirs[J]. Geophysical Prospecting, 2023, 71(4): 664⁃681.
|
5 |
WEI L, DI B R, WEI J X. Analysis of seismic response characteristics of fractured carbonate reservoirs based on physical model(Tarim basin)[J]. Applied Sciences, 2024, 14(9): 3775.
|
6 |
SHI J X, ZHAO X Y, PAN R F, et al. Natural fractures in the deep Sinian carbonates of the central Sichuan Basin, China: Implications for reservoir quality[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110829.
|
7 |
闫海军, 邓惠, 万玉金, 等. 四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J]. 天然气地球科学, 2020, 31(8): 1152⁃1160.
|
|
YAN H J, DENG H, WAN Y J, et al. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth member of Dengying formation in Moxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1152⁃1160.
|
8 |
刘历历,解英明,李育展,等.低压气井修井注气吞吐复产气液两相渗流规律[J]. 新疆石油天然气,2023,19(2):75⁃81.
|
|
LIU L L,XIE Y M,LI Y Z,et al. The law of gas⁃liquid two⁃phase seepage for workover gas injection huff and puff production recovery in low⁃pressure gas wells[J]. Xinjiang Oil & Gas,2023,19(2):75⁃81.
|
9 |
YAO Y T, ZENG L B, DONG S Q, et al. Using seismic methods to detect connectivity of fracture networks controlled by strike⁃slip faults in ultra⁃deep carbonate reservoirs: A case study in northern Tarim Basin, China[J]. Journal of Structural Geology, 2024, 180: 105060.
|
10 |
WANG Q H, ZHANG Y T, XIE Z, et al. The advancement and challenges of seismic techniques for ultra⁃deep carbonate reservoir exploitation in the Tarim Basin of northwestern China[J]. Energies, 2022, 15(20): 7653.
|
11 |
ZHOU Y, YANG F L, JI Y L, et al. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying formation, central Sichuan basin, southwestern China[J]. Precambrian Research, 2020, 343: 105708.
|
12 |
张炜,侯吉瑞,屈鸣,等.基于3D打印和纳米黑卡技术提高缝洞型碳酸盐岩储层采收率[J].油田化学,2024,41(3): 465⁃473.
|
|
ZHANG W, HOU J R, QU M,et al. Enhanced oil recovery in fractured⁃vuggy carbonate reservoirs based on 3D printing and black nano⁃sheet technology [J]. Oilfield Chemistry, 2024,41(3):465⁃473.
|
13 |
WANG L, HE Y M, PENG X, et al. Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng Ⅳ member, Gaoshiti⁃Moxi area, Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2020, 111: 44⁃65.
|
14 |
CHENG Y Y, LUO X, ZHUO Q G, et al. Description of pore structure of carbonate reservoirs based on fractal dimension[J]. Processes, 2024, 12(4): 825.
|
15 |
QI Y X, LIU K X, PENG Y, et al. Visualization of mercury percolation in porous hardened cement paste by means of X⁃ray computed tomography[J]. Cement and Concrete Composites, 2021, 122: 104111.
|
16 |
WANG H L, TIAN L, CHAI X L, et al. Effect of pore structure on recovery of CO2 miscible flooding efficiency in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109305.
|
17 |
ZENG Q, CHEN S, YANG P C, et al. Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement⁃based porous materials by monitoring the mercury entrapments with X⁃ray computed tomography[J]. Cement and Concrete Composites, 2020, 113: 103726.
|
18 |
ZHANG Y X, YANG S L, ZHANG Z, et al. Multiscale pore structure characterization of an ultra⁃deep carbonate gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109751.
|
19 |
CHENG Y Y, LUO X, ZHUO Q G, et al. Description of pore structure of carbonate reservoirs based on fractal dimension[J]. Processes, 2024, 12(4): 825.
|
20 |
HOU J, ZHAO L, ZENG X, et al. Characterization and evaluation of carbonate reservoir pore structure based on machine learning[J]. Energies, 2022, 15(19): 7126.
|
21 |
ABDULAZIZ A M, MAHDI H A, SAYYOUH M H. Prediction of reservoir quality using well logs and seismic attributes analysis with an artificial neural network: A case study from Farrud reservoir, Al⁃Ghani field, Libya[J]. Journal of Applied Geophysics, 2019, 161: 239⁃254.
|
22 |
BOATENG C D, FU L Y, DANUOR S K. Characterization of complex fluvio⁃deltaic deposits in northeast China using multi⁃modal machine learning fusion[J]. Scientific Reports, 2020, 10(1): 13357.
|
23 |
ESMAEILZADEH S, SALEHI A, HETZ G, et al. A general spatio⁃temporal clustering⁃based non⁃local formulation for multiscale modeling of compartmentalized reservoirs[C]//SPE Western Regional Meeting. Calgary: SPE, 2019: SPE⁃195329⁃MS.
|
24 |
YASIN Q, DING Y, BAKLOUTI S, et al. An integrated fracture parameter prediction and characterization method in deeply⁃buried carbonate reservoirs based on deep neural network[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109346.
|
25 |
SUN P. Fracture identification and porosity prediction of carbonate reservoirs based on neural network simulation[C]//E3S Web of Conferences. Singapore: EEMS, 2024, 561: 03001.
|
26 |
SPENCE G H, COUPLES G D, BEVAN T G, et al. Advances in the study of naturally fractured hydrocarbon reservoirs: A broad integrated interdisciplinary applied topic[J]. Geological Society, London,Special Publication, 2014, 374(1): 1⁃22.
|
27 |
YAO S F, DING W L. Application of support vector machine in porosity prediction of carbonate reservoirs[J]. International Journal of Computational Intelligence Systems and Applications, 2019, 7(1): 28⁃37.
|
28 |
YASIN Q, SOHAIL G M, DING Y, et al. Estimation of petrophysical parameters from seismic inversion by combining particle swarm optimization and multilayer linear calculator[J]. Natural Resources Research, 2020, 29(5): 3291⁃3317.
|
29 |
李昂,吴柠羽,张丽艳,等.页岩储层不同尺度断裂识别方法[J]. 新疆石油天然气,2024,20(3):30⁃36.
|
|
LI A,WU N Y,ZHANG L Y,et al. Faults at various scales identification techniques in shale reservoirs[J]. Xinjiang Oil & Gas,2024,20(3):30⁃36.
|
30 |
DAS V, MUKERJI T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks[J]. Geophysics, 2020, 85(5): N41⁃N55.
|
31 |
ZHAO L X, ZOU C F, CHEN Y Y, et al. Fluid and lithofacies prediction based on integration of well⁃log data and seismic inversion: A machine⁃learning approach[J]. Geophysics, 2021, 86(4): M151⁃M165.
|
32 |
CHEN Y Y, ZHAO L X, PAN J G, et al. Deep carbonate reservoir characterisation using multi⁃seismic attributes via machine learning with physical constraints[J]. Journal of Geophysics and Engineering, 2021, 18(5): 761⁃775.
|
33 |
ZHAO L X, ZHU X Y, ZHAO X Y, et al. Deep carbonate reservoir characterization using multiseismic attributes: A comparison of unsupervised machine⁃learning approaches[J]. Geophysics, 2024, 89(2): B65⁃B82.
|
34 |
DUAN Y T, ZHENG X D, HU L L, et al. Seismic facies analysis based on deep convolutional embedded clustering[J]. Geophysics, 2019, 84(6): IM87⁃IM97.
|
35 |
ZHU D L, CUI J B, LI Y, et al. Adaptive gaussian mixture model and convolution autoencoder clustering for unsupervised seismic waveform analysis[J]. Interpretation, 2022, 10(1): T181⁃T193.
|
36 |
LIU B, YASIN Q, SOHAIL G M, et al. Seismic characterization of fault and fractures in deep buried carbonate reservoirs using CNN⁃LSTM based deep neural networks[J]. Geoenergy Science and Engineering, 2023, 229: 212126.
|
37 |
LÜ B N, CHEN X H, QIE C C, et al. Integrated characterization of deep karsted carbonates in the Tahe oilfield, Tarim basin[J]. Journal of Geophysics and Engineering, 2024, 21(2): 668⁃684.
|
38 |
孙建孟, 孙晓娟, 迟蓬, 等. 数字岩心和数字井筒技术研究与应用进展[J]. 石油物探, 2023, 62(5): 806⁃819.
|
|
SUN J M, SUN X J, CHI P, et al. Digital cores and digital wellbore technology: Application and research progress[J]. Geophysical Prospecting for Petroleum, 2023, 62(5): 806⁃819.
|
39 |
贾然. 滨里海盆地石炭系储层综合分析与地质储量评估[J]. 录井工程, 2024,35(1): 127⁃135.
|
|
JIA R. Comprehensive analysis and geologic reserve evaluation of Carboniferous reservoirs in the Marginal Caspian Basin[J]. Mud Logging Engineering, 2024,35(1): 127⁃135.
|
40 |
李文涛, 涂利辉, 鲁明宇, 等. 基于数字岩心的碳酸盐岩复杂孔隙特征研究——以普光气田飞仙关组储层为例[J]. 断块油气田, 2024, 31(1): 114⁃122.
|
|
LI W T, TU L H, LU M Y, et al. Study on complex pore characteristics of carbonate reservoirs based on digital core: A case study of Feixianguan formation in Puguang gas field[J]. Fault⁃Block Oil and Gas Field, 2024, 31(1): 114⁃122.
|
41 |
TIAN F, LUO X R, ZHANG W. Integrated geological⁃geophysical characterizations of deeply buried fractured⁃vuggy carbonate reservoirs in Ordovician strata, Tarim Basin[J]. Marine and Petroleum Geology, 2019, 99: 292⁃309.
|
42 |
REN Q Q, JIN Q, FENG J W, et al. Geomechanical models for the quantitatively prediction of multi⁃scale fracture distribution in carbonate reservoirs[J]. Journal of Structural Geology, 2020, 135: 104033.
|
43 |
HU X Y, ZHENG W B, ZHAO X Y, et al. Quantitative characterization of deep fault⁃karst carbonate reservoirs: A case study of the Yuejin block in the Tahe Oilfield[J]. Energy Geoscience, 2023, 4(3): 100153.
|
44 |
WANG L. Ultradeep carbonate gas reservoirs: Reservoir characteristics and percolation mechanism[M]. Singapore: Springer, 2023.
|
45 |
HORNUNG U. Homogenization and porous media[M]. New York: Springer, 2012.
|
46 |
GLÄSER D, HELMIG R, FLEMISCH B, et al. A discrete fracture model for two⁃phase flow in fractured porous media[J]. Advances in Water Resources, 2017, 110: 335⁃348.
|
47 |
WANG D G, SUN J J, LI Y, et al. An efficient hybrid model for nonlinear two⁃phase flow in fractured low⁃permeability reservoir[J]. Energies, 2019, 12(15): 2850.
|
48 |
HUANG Z Q, YAO J, WANG Y Y. An efficient numerical model for immiscible two⁃phase flow in fractured karst reservoirs[J]. Communications in Computational Physics, 2013, 13(2): 540⁃558.
|
49 |
LI Y, YU Q Y, JIA C X, et al. Rate transient analysis for coupling Darcy flow and free flow in bead⁃string fracture⁃caved carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107809.
|
50 |
ZHANG K, MA X P, LI Y L, et al. Parameter prediction of hydraulic fracture for tight reservoir based on micro⁃seismic and history matching[J]. Fractals, 2018, 26(2): 1840009.
|
51 |
ZHANG N, WANG Y T, SUN Q, et al. Multiscale mass transfer coupling of triple⁃continuum and discrete fractures for flow simulation in fractured vuggy porous media[J]. International Journal of Heat and Mass Transfer, 2018, 116: 484⁃495.
|
52 |
WANG Y Y, YAO J, HUANG Z Q. Parameter effect analysis of Non⁃Darcy flow and a method for choosing a fluid flow equation in fractured karstic carbonate reservoirs[J]. Energies, 2022, 15(10): 3623.
|
53 |
ZHANG N, YAO J, HUANG Z Q, et al. Accurate multiscale finite element method for numerical simulation of two⁃phase flow in fractured media using discrete⁃fracture model[J]. Journal of Computational Physics, 2013, 242: 420⁃438.
|
54 |
KOU J L, LU H J, WU F M, et al. Electricity resonance⁃induced fast transport of water through nanochannels[J]. Nano Letters, 2014, 14(9): 4931⁃4936.
|
55 |
WANG M, CHEUNG S W, CHUNG E T, et al. Generalized multiscale multicontinuum model for fractured vuggy carbonate reservoirs[J]. Journal of Computational and Applied Mathematics, 2020, 366: 112370.
|
56 |
SIDIQ H, AMIN R, KENNAIRD T. The study of relative permeability and residual gas saturation at high pressures and high temperatures[J]. Advances in Geo⁃Energy Research, 2017, 1(1): 64⁃68.
|
57 |
LI C H, LI X Z, GAO S S, et al. Experiment on gas⁃water two⁃phase seepage and inflow performance curves of gas wells in carbonate reservoirs: A case study of Longwangmiao formation and Dengying formation in Gaoshiti⁃Moxi block, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 983⁃992.
|
58 |
LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra⁃deep structural gas fields in China[J]. Petroleum Exploration and Development, 2018, 45(1): 118⁃126.
|
59 |
HU J T, YANG S L, WANG B D, et al. Effect of pore structure characteristics on gas⁃water seepage behaviour in deep carbonate gas reservoirs[J]. Geoenergy Science and Engineering, 2024: 212881.
|
60 |
ZHANG R H, LU G, PENG X, et al. Study on the mechanism of gas⁃water two⁃phase flow in carbonate reservoirs at pore scale[J/OL]. Petroleum. (2023⁃09⁃28) [2024⁃08⁃27]. https://doi.org/10.1016/j.petlm.2023.09.008.
|