辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2021, Vol. 41 ›› Issue (6): 92-96.DOI: 10.3969/j.issn.1672-6952.2021.06.017

• 信息与控制工程 • 上一篇    

基于AR⁃PLS的FCM聚类在线性能评价

高新域1(), 陶文华1(), 王玉英2   

  1. 1.辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
    2.中国石油辽阳石化分公司,辽宁 辽阳 111003
  • 收稿日期:2020-10-09 修回日期:2020-11-02 出版日期:2021-12-25 发布日期:2021-12-28
  • 通讯作者: 陶文华
  • 作者简介:高新域(1996⁃),男,硕士研究生,从事过程控制与优化方面研究;E⁃mail:1093065415@qq.com
  • 基金资助:
    国家自然科学基金项目(61703191)

Online Performance Evaluation of FCM Clustering Based on AR⁃PLS

Xinyu Gao1(), Wenhua Tao1(), Yuying Wang2   

  1. 1.School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China
    2.PetroChina Liaoyang Petrochemical Company,Liaoyang Liaoning 111003,China
  • Received:2020-10-09 Revised:2020-11-02 Published:2021-12-25 Online:2021-12-28
  • Contact: Wenhua Tao

摘要:

传统偏最小二乘法(PLS)在工业过程建模中运算过程繁琐,复杂工业过程的性能评价模型难以在线获得。采用自回归潜结构投影(AR?PLS)算法对相关过程数据建立预测模型,通过模糊C均值聚类算法划分输出数据的性能等级,建立一种在线性能评价模型。仿真结果表明,该方法相比传统偏最小二乘法建模过程简便,计算复杂度低,具有一定的应用价值。

关键词: 自回归潜结构投影, 模糊C均值聚类, 偏最小二乘法, 性能评价

Abstract:

As the traditional partial least squares (PLS) method has the problem of tedious steps in the process modeling, it is difficult to obtain the online performance evaluation model of complex process.The autoregressive projection to latent structures (AR?PLS) algorithm was used to establish the predictive model for the related process data.An online performance evaluation model was established by the performance levels of the output data which was divided by the fuzzy C?means clustering algorithm. The simulation results show that compared with the traditional partial least squares method, the modeling process of this method is simpler and the computational complexity is reduced, it has certain application value.

Key words: Autoregressive projection to latent structures, Fuzzy C?Means clustering, Partial least squares, Performance evaluation

中图分类号: 

引用本文

高新域, 陶文华, 王玉英. 基于AR⁃PLS的FCM聚类在线性能评价[J]. 辽宁石油化工大学学报, 2021, 41(6): 92-96.

Xinyu Gao, Wenhua Tao, Yuying Wang. Online Performance Evaluation of FCM Clustering Based on AR⁃PLS[J]. Journal of Liaoning Petrochemical University, 2021, 41(6): 92-96.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3969/j.issn.1672-6952.2021.06.017

               https://journal.lnpu.edu.cn/CN/Y2021/V41/I6/92