辽宁石油化工大学学报 ›› 2009, Vol. 29 ›› Issue (4): 87-89.

• 数学与管理 • 上一篇    下一篇

BP神经网络拟合方解石晶体色散方程

张荣培1,李 涛2   

  1. 1.辽宁石油化工大学理学院,辽宁抚顺113001;2.辽宁石油化工大学后勤集团,辽宁抚顺113001
  • 收稿日期:2008-09-11 出版日期:2009-12-25 发布日期:2017-07-05
  • 作者简介:张荣培(1978-),男,山东新泰市,讲师,在读博士

Curve Fitting of Calcite Crystal Based on BP Neural Network

ZHANG Rong-pei1, LI Tao2   

  1. 1.School of Science,Liaoning University of Petroleum & Chemical Technology,Fushun Liaoning 113001,P.R.China; 2.Logistic Service, Liaoning University of Petroleum & Chemical Technology,Fushun Liaoning 113001,P.R.China
  • Received:2008-09-11 Published:2009-12-25 Online:2017-07-05

摘要: 介绍BP算法神经网络曲线拟合方法,并借助MATLAB工具箱函数将它运用于方解石色散特性研
究,通过拟合效果图,误差曲线,误差范数反映BP神经网络的优越性,体现BP算法较高的预测能力和良好的泛化能
力,并且可以自动地确定数学模型,精确度高,原理也较简单,尤其对复杂的输入输出系统具有更好的效果。

关键词: 方解石 , BP神经网络 ,  MATLAB

Abstract: Curve fitting method of BP neural network was introduced and applied in the model of the dispersion of calcite crystals by MATLAB tools. The results show that BP algorithm has high forecasting capacity and good generalization capacity in three areas: the map of curve fitting, the deviation curve and the error norm. BP neural network can automatically identify mathematical model, which has higher precision, and its principle is relatively simple. So it is a very good tool for complex input-output system.

Key words: Calcite , BP neural network , MATLAB

引用本文

张荣培,李 涛. BP神经网络拟合方解石晶体色散方程[J]. 辽宁石油化工大学学报, 2009, 29(4): 87-89.

ZHANG Rong-pei1, LI Tao2. Curve Fitting of Calcite Crystal Based on BP Neural Network[J]. Journal of Liaoning Petrochemical University, 2009, 29(4): 87-89.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2009/V29/I4/87