辽宁石油化工大学学报 ›› 2007, Vol. 27 ›› Issue (4): 64-67.

• 计算机与自动化 • 上一篇    下一篇

基于改进小波网络的TE 过程故障诊断

刘晓琴, 申东日, 苏成利   

  1. 辽宁石油化工大学信息与控制工程学院, 辽宁抚顺113001
  • 收稿日期:2007-02-06 出版日期:2007-12-20 发布日期:2017-07-05
  • 作者简介:刘晓琴(1975 -) :女辽宁辽阳县讲师硕士

Fault Diagnosis of T ennessee -Eastman Process Based on the Improved Wavelet Network

  1. School of Information and Control Engineering , Liaoning Univ ersity o f Petroleum &Chemical Technology , Fushun Liaoning 113001, P .R .China
  • Received:2007-02-06 Published:2007-12-20 Online:2017-07-05

摘要:      针对BP 算法容易陷入局部极小值、收敛速度慢及容易振荡等缺点, 采用小波BP 网络且对小波网络采用基于梯度符号变化的局部学习率自适应算法和引入动量项的改进。将改进后的算法对多变量非线性的田纳西-伊斯曼过程进行了仿真研究, 结果表明改进算法提高了故障分类的辨识精度。

关键词: 小波网络,    , 故障诊断,    , TE 过程

Abstract:

     BP algorithm trends to fall into the local minimum value , slow convergence speed and frequent oscillation.The wave let BP network was used , and self -adaptive learning rate algorithm based on the sign change of gradient and momentum item we re added in it .The improved algorithm was applied in Tennessee -eastman process of a multiple - variable and nonlinear system .The results show that the algorithm can improve the recognition accuracy of fault classification.

Key words: Wavelet network,    , Fault diagnosis,    , Tennessee - eastman process

引用本文

刘晓琴, 申东日, 苏成利. 基于改进小波网络的TE 过程故障诊断[J]. 辽宁石油化工大学学报, 2007, 27(4): 64-67.

LIU Xiao -qin,SHEN Do ng -ri,SU Cheng -li. Fault Diagnosis of T ennessee -Eastman Process Based on the Improved Wavelet Network[J]. Journal of Liaoning Petrochemical University, 2007, 27(4): 64-67.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2007/V27/I4/64