辽宁石油化工大学学报 ›› 2007, Vol. 27 ›› Issue (3): 82-85.

• 数学与管理 • 上一篇    下一篇

广义 α-双对角占优矩阵的判定

刘 晶, 崔 琦, 宋岱才*   

  1. 辽宁石油化工大学理学院,辽宁抚顺 113001)
  • 收稿日期:2007-04-16 出版日期:2007-09-20 发布日期:2017-07-23
  • 基金资助:
    辽宁省教育厅高校科研项目(2004F100);辽宁石油化工大学重点学科建设资助项目(K200409)。

Criteria of Generalized α-Doubly Diagonally Dominant Matrices

LIU JingCUI QiSONG Dai-cai*   

  1. School of Science, Liaoning University of Petroleum & Chemical Technology, Fushun Liaoning 113001, P.R.China
  • Received:2007-04-16 Published:2007-09-20 Online:2017-07-23

摘要: 设=(aij)∈Cn×n ,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n})有|aiiajj|≥(R iRj)α(SiSj)1-α,则称[WTHX]A[WTBX]为α-双对角占优矩阵。首先推广α-双对角占优矩阵的概念到广义α-双对角占优,然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。

关键词: 不可约矩阵, &alpha, -双对角占优矩阵, 广义严格&alpha, -双对角占优矩阵

Abstract: Let [WTHX]A[WTBX]=(aij)∈Cn×n, [WTBZ]if there exists[WTBX] α[WTBZ]∈(0,1), which can make[WTBX] |aiiajj|≥(RiRj)α(SiSj)1-α[WTBZ] be right for[WTBX] i≠j(i,j∈N={1,2,…,n}), [WTBZ]then [WTHX]A[WTBZ] is called an α-doubly diagonally dominant matrix. First it is extended the concept to generalized α-doubly diagonally dominant matrix, and obtained a new necessary and sufficient condition for [WTHX]A[WTBZ] to be generalized α-doubly diagonally dominant matrices, improving and generalizing the related results. This result enriches and improves the theory of α-doubly diagonally dominant matrices.

Key words: Irreducible matrix, α-Doubly diagonally dominant, Generalized α-doubly diagonally dominant matrix

引用本文

刘 晶, 崔 琦, 宋岱才. 广义 α-双对角占优矩阵的判定[J]. 辽宁石油化工大学学报, 2007, 27(3): 82-85.

LIU Jing, CUI Qi, SONG Dai-cai. Criteria of Generalized α-Doubly Diagonally Dominant Matrices[J]. Journal of Liaoning Petrochemical University, 2007, 27(3): 82-85.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2007/V27/I3/82