1 |
杨昕毓, 孙舒, 石岩, 等. 水热时间对CuO/CeO2催化甲醇水蒸气重整制氢的影响[J]. 石油化工高等学校学报, 2023, 36(2): 63⁃69.
|
|
YANG X Y, SUN S, SHI Y, et al. Effects of hydrothermal reaction time on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Petrochemical Universities, 2023, 36(2): 63⁃69.
|
2 |
李志学, 杨占旭. 共沉淀法制备Co9S8/C材料以及性能研究[J]. 辽宁石油化工大学学报, 2020, 40(2): 1⁃5.
|
|
LI Z X, YANG Z X. Preparation and properties of Co9S8/C materials by coprecipitation method[J]. Journal of Liaoning Shihua University, 2020, 40(2): 1⁃5.
|
3 |
LI Y, GU Q F, JOHANNESSEN B, et al. Synergistic Pt doping and phase conversion engineering in two⁃dimensional MoS2 for efficient hydrogen evolution[J]. Nano Energy, 2021, 84: 105898.
|
4 |
关扬, 闫飞, 黄亮亮, 等. Pt负载Li2Co2O4的合成及其析氧性能研究[J]. 辽宁石油化工大学学报, 2018, 38(5): 30⁃34.
|
|
GUAN Y, YAN F, HUANG L L, et al. Synthesis of Pt loaded Li2Co2O4 and its oxygen evolution performance[J]. Journal of Liaoning Shihua University, 2018, 38(5): 30⁃34.
|
5 |
CAO Y, XIAHOU Y J, XING L X, et al. Fe(Ⅱ)⁃assisted one⁃pot synthesis of ultra⁃small core⁃shell Au⁃Pt nanoparticles as superior catalysts towards the HER and ORR[J]. Nanoscale, 2020, 12(39): 20456⁃20466.
|
6 |
AGGARWAL P, SARKAR D, MENEZES P W, et al. Boosting electrochemical hydrogen evolution activity of MoS2 nanosheets via facile decoration of Au overlayer[J]. International Journal of Hydrogen Energy, 2022, 47(99): 41795⁃41805.
|
7 |
MAI H D, JEONG S, BAE G N, et al. Pd Sulfidation⁃Induced 1T⁃Phase tuning in monolayer MoS2 for hydrogen evolution reaction[J]. Advanced Energy Materials, 2023, 13(23): 2300183.
|
8 |
张红涛, 韩乔, 杨占旭. 二硫化钼在电催化析氢反应中的应用进展[J]. 化工新型材料, 2023, 51(5): 49⁃54.
|
|
ZHANG H T, HAN Q, YANG Z X. Application progress of molybdenum disulfide in electrocatalytic hydrogen evolution reaction[J]. New Chemical Materials, 2023, 51(5): 49⁃54.
|
9 |
ZHOU F, ZHOU Y, LIU G G, et al. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction[J]. Rare Metals, 2021, 40(12): 3375⁃3405.
|
10 |
ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(29): 14942⁃14962.
|
11 |
XU Y, GE R Y, YANG J, et al. Molybdenum disulfide(MoS2)⁃based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation[J]. Journal of Energy Chemistry, 2022(11): 45⁃71.
|
12 |
YU Y F, HUANG S Y, LI Y P, et al. Layer⁃dependent electrocatalysis of MoS2 for hydrogen evolution[J]. Nano Letters, 2014, 14(2): 553⁃558.
|
13 |
练青, 冯辉霞, 陈娜丽, 等. MoS2及其复合材料的吸波研究进展[J]. 化工新型材料, 2022, 50(8): 287⁃291.
|
|
LIAN Q, FENG H X, CHEN N L, et al. Research progress on microwave absorption of MoS2 and its composite[J]. New Chemical Materials, 2022, 50(8): 287⁃291.
|
14 |
SUN J P, MENG X C. Modulating the electronic properties of MoS2 nanosheets for electrochemical hydrogen production: A review[J]. ACS Applied Nano Materials, 2021, 4(11): 11413⁃11427.
|
15 |
SAMY O, MOUTAOUAKIL A E. A review on MoS2 energy applications: Recent developments and challenges[J]. Energies, 2021, 14(15): 4586.
|
16 |
GAO B, ZHAO Y W, DU X Y, et al. Facile phase transition engineering of MoS2 for electrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2021, 9(13): 8394⁃8400.
|
17 |
ZHANG H, XIAO X J, XU H L, et al. Two⁃dimensional metal⁃phase layered molybdenum disulfide for electrocatalytic hydrogen evolution reaction[J]. Nanoscale, 2023, 15(9): 4429⁃4437.
|
18 |
SUNDARA VENKATESH P, KANNAN N, GANESH BABU M, et al. Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(88): 37256⁃37263.
|
19 |
SHILPA R, SIBI K S, PAI R K, et al. Electrocatalytic water splitting for efficient hydrogen evolution using molybdenum disulfide nanomaterials[J]. Materials Science and Engineering: B, 2022, 285: 115930.
|
20 |
LI Y R, WANG S Q, HU Y D, et al. Highly dispersed Pt nanoparticles on 2D MoS2 nanosheets for efficient and stable hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2022, 10(10): 5273⁃5279.
|
21 |
CHOI H C, SHIM M, BANGSARUNTIP S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes[J]. Journal of the American Chemical Society, 2002, 124(31): 9058⁃9059.
|
22 |
ZHANG H B, AN P F, ZHOU W, et al. Dynamic traction of lattice⁃confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Science Advances, 2018, 4(1): eaao6657.
|
23 |
NAVAEE A, SALIMI A. Anodic platinum dissolution, entrapping by amine functionalized⁃reduced graphene oxide: A simple approach to derive the uniform distribution of platinum nanoparticles with efficient electrocatalytic activity for durable hydrogen evolution and ethanol oxidation[J]. Electrochimica Acta, 2016, 211: 322⁃330.
|
24 |
RAZAVI M, SOOKHAKIAN M, GOH B T, et al. Molybdenum disulfide nanosheets decorated with platinum nanoparticle as a high active electrocatalyst in hydrogen evolution reaction[J]. Nanoscale Research Letters, 2022, 17(1): 9.
|
25 |
GAO B, ZHAO Y W, DU X Y, et al. Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping[J]. Chemical Engineering Journal, 2021, 411: 128567.
|
26 |
ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313⁃318.
|
27 |
CHANG K, HAI X, PANG H, et al. Targeted synthesis of 2H⁃and 1T⁃phase MoS2 monolayers for catalytic hydrogen evolution[J]. Advanced Materials, 2016, 28(45): 10033⁃10041.
|
28 |
YIN Y, HAN J C, ZHANG Y M, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965⁃7972.
|
29 |
SHI Z Y, ZHANG X, LIN X Q, et al. Phase⁃dependent growth of Pt on MoS2 for highly efficient H2 evolution[J]. Nature, 2023, 621(7978): 300⁃305.
|
30 |
ZHANG J Q, ZHAO Y F, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985⁃992.
|
31 |
TSIKRITZIS D, TSUD N, SKÁLA T, et al. Unravelling the phase transition of 2H⁃MoS2 to 1T⁃MoS2 induced by the chemical interaction of Pd with molybdenum disulfide⁃graphene hybrids[J]. Applied Surface Science, 2022, 599: 153896.
|
32 |
LIU X N, CHEN J, HU Y, et al. Optimization of the in⁃plane activity of MoS2 monolayer by Pd-S bonds for hydrogen evolution reaction[J]. Applied Surface Science, 2024, 642: 158563.
|
33 |
SULTANA F, MUSHTAQ M, WANG J H, et al. An insight to catalytic synergic effect of Pd⁃MoS2 nanorods for highly efficient hydrogen evolution reaction[J]. Arabian Journal of Chemistry, 2022, 15(5): 103735.
|
34 |
SONG X C, LI B, PENG W C, et al. A palladium doped 1T⁃phase molybdenum disulfide⁃black phosphorene two⁃dimensional van der Waals heterostructure for visible⁃light enhanced electrocatalytic hydrogen evolution[J]. Nanoscale, 2021, 13(11): 5892⁃5900.
|
35 |
ZHENG L H, TANG C K, LÜ Q F, et al. MoS2/Mo2TiC2Tx supported Pd nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11739⁃11749.
|
36 |
LUO Z Y, OUYANG Y X, ZHANG H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nature Communications, 2018, 9(1): 2120.
|
37 |
WANG J, FANG W H, HU Y, et al. Single atom Ru doping 2H⁃MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range[J]. Applied Catalysis B: Environmental, 2021, 298: 120490.
|
38 |
ZHANG Y C, YANG T R, LI J, et al. Construction of Ru, O Co⁃doping MoS2 for hydrogen evolution reaction electrocatalyst and surface⁃enhanced raman scattering substrate: High⁃Performance, recyclable, and durability improvement[J]. Advanced Functional Materials, 2023, 33(3): 2210939.
|
39 |
YU J M, QIAN Y T, WANG Q, et al. Single⁃atomic rhenium⁃assisted 2H⁃to⁃1T phase transformation of MoS2 nanosheets boosting electrocatalytic hydrogen evolution[J]. EES Catalysis, 2023, 1: 571⁃579.
|
40 |
ALIAGA J, VERA P, ARAYA J, et al. Electrochemical hydrogen evolution over hydrothermally synthesized Re⁃doped MoS2 flower⁃like microspheres[J]. Molecules, 2019, 24(24): 4631.
|
41 |
LENG X, WANG Y, WANG F. Hydrogen evolution catalytic performance of metal doped MoS2[J]. Journal of Physics: Conference Series, 2019, 1407: 012070.
|
42 |
WANG Z W, ZHANG X, GAO Y F, et al. Transition metal (Fe, Co, Ni) doping enhanced monolith catalysts of 1T⁃MoS2/Mo for the large⁃current hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 56: 75⁃83.
|
43 |
QIAO W, XU W, WU N D, et al. Mutually enhanced catalytic activity of doped cobalt in porous MoS2 for hydrogen evolution reaction[J]. Nano, 2021, 16(3): 2150027.
|
44 |
LIU B C, CHENG Y, CAO B, et al. Hybrid heterojunction of molybdenum disulfide/single cobalt atoms anchored nitrogen, sulfur⁃doped carbon nanotube /cobalt disulfide with multiple active sites for highly efficient hydrogen evolution[J]. Applied Catalysis B: Environmental, 2021, 298: 120630.
|
45 |
MA F H, LIANG Y, ZHOU P, et al. One⁃step synthesis of Co⁃doped 1T⁃MoS2 nanosheets with efficient and stable HER activity in alkaline solutions[J]. Materials Chemistry and Physics, 2020, 244: 122642.
|
46 |
TAN X J, ZHAO D P, SUN Y C, et al. Co⁃doped MoS2 nanosheet: A stable and pH⁃universal electrocatalyst for an efficient hydrogen evolution reaction[J]. CrystEngComm, 2022, 24(38): 6696⁃6704.
|
47 |
QIAO W, XU W, XU X Y, et al. Construction of active orbital via single⁃atom cobalt anchoring on the surface of 1T⁃MoS2 basal plane toward efficient hydrogen evolution[J]. ACS Applied Energy Materials, 2020, 3(3): 2315⁃2322.
|
48 |
LIU G L, ROBERTSON A W, LI M M J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry, 2017, 9(8): 810⁃816.
|
49 |
CHEN X, SUN J X, GUAN J M, et al. Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping[J]. International Journal of Hydrogen Energy, 2022, 47(55): 23191⁃23200.
|
50 |
JIAN J H, KANG H J, QIAO X S, et al. Cobalt and aluminum co⁃optimized 1T phase MoS2 with rich edges for robust hydrogen evolution activity[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(31): 10203⁃10210.
|
51 |
GOPANNAGARI M, RANGAPPA A P, SEO S, et al. Atomically engineered molybdenum di⁃sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods[J]. Solid State Sciences, 2022, 134: 107047.
|
52 |
NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution[J]. Journal of the Electrochemical Society, 2005, 152(2): J23⁃J26.
|
53 |
HUANG X L, LENG M, XIAO W, et al. Activating basal planes and S⁃terminated edges of MoS2 toward more efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(6): 1604943.
|
54 |
XIAO W, LIU P T, ZHANG J Y, et al. Dual⁃functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution[J]. Advanced Energy Materials, 2017, 7(7): 1602086.
|
55 |
LIU P T, ZHU J Y, ZHANG J Y, et al. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Letters, 2017, 2(4): 745⁃752.
|
56 |
DU J, HAN Q, LIU C, et al. In⁃situ transformation into MoP/MoS2 heterogeneous structure with rich S⁃vacancy enhanced hydrogen evolution reaction[J]. Applied Surface Science, 2024, 649: 159098.
|
57 |
FENG A L, DING S J, LIU P T, et al. N, P co⁃doping triggered phase transition of MoS2 with enlarged interlayer spacing for efficient hydrogen evolution[J]. New Journal of Chemistry, 2022, 46(32): 15693⁃15700.
|