石油化工高等学校学报

石油化工高等学校学报 ›› 2015, Vol. 28 ›› Issue (2): 19-25.DOI: 10.3969/j.issn.1006-396X.2015.02.004

• 石油化工 • 上一篇    下一篇

千瓦级P EMF C甲醇水蒸气重整制氢过程热力学模拟

苏石龙1,  张 磊1,  张 艳2,  雷俊腾1,  桂建舟3, 刘 丹3,  刘道胜1,  潘立卫4   

  1. ( 1. 辽宁石油化工大学, 辽宁抚顺1 1 3 0 0 1; 2. 中国石油天然气股份有限公司抚顺石化分公司乙烯化工厂计量站,
    辽宁抚顺1 1 3 0 0 4; 3. 天津工业大学, 天津3 0 0 3 8 7; 4. 大连大学, 辽宁大连1 1 6 6 2 2)
  • 收稿日期:2015-03-16 修回日期:2015-03-27 出版日期:2015-04-25 发布日期:2015-06-23
  • 通讯作者: 张磊( 1 9 8 3 - ) , 男, 博士, 讲师, 从事燃料电池氢源系统的研究; E - m a i l : l n p u z h a n g l e i @1 6 3. c o m。
  • 作者简介:苏石龙( 1 9 8 5 - ) , 男, 硕士研究生, 从事燃料电池氢源系统的研究; E - m a i l : s p o i n t e r @q q. c o m。
  • 基金资助:
    国家自然科学基金资助项目( 2 1 3 7 6 2 3 7) ; 辽宁省教育厅科学研究一般项目( L 2 0 1 4 1 5 7) 。

Thermodynamic Simulation for Hydrogen Production in the Methanol  Steam Reforming System of Kilowatt PEMFC

  1. (1.Liaoning Shihua University, Fushun Liaoning 113001, China; 2. Metering Station, Ethylene Chemical Plant,  Fushun Petrochemical Branch Company, PetroChina, Fushun Liaoning 113004, China;  3.Tianjin Polytechnic University, Tianjin 300387,China; 4.Dalian University, Dalian Liaoning 116622,China)
  • Received:2015-03-16 Revised:2015-03-27 Published:2015-04-25 Online:2015-06-23

摘要: 运用 A s p e nP l u s软件对千瓦级质子交换膜燃料电池甲醇水蒸气重整制氢系统进行热力学模拟分析, 考察不同水醇物质的量比( 0. 8~1. 6) 、 反应温度( 1 4 0~4 0 0℃) 及压力( 1 0 1. 3 2 5~5 0 6. 6 2 5k P a) 对甲醇水蒸气重整过 程的影响。结果表明, 升高反应温度可以提高甲醇平衡转化率和CO摩尔分数, 但会降低重整气中 H2 摩尔分数; 增 大压力会降低甲醇平衡转化率, 但对 H2 和CO摩尔分数的影响较小; 增加水醇物质的量比n( W) / n( M) , 甲醇平衡 转化率增大, 但大量水蒸气的使用会增加系统的负荷, 降低热效率, 所以合适的n( W) / n( M) 为1. 2~1. 4; 通过对整 个氢源系统的模拟发现, 经甲醇水蒸气重整、 水汽变化和选择性氧化后, 出口气中 H2 摩尔分数为6 4. 2 7%, CO摩尔 分数小于1 0-5, 可为千瓦级质子交换膜燃料电池提供氢源。

关键词: 甲醇水蒸气重整, 过程模拟, 水汽变换反应, 氢气, 一氧化碳

Abstract: The thermodynamic simulation analysis for methanol steam reforming hydrogen production system of kilowatt proton exchange membrane fuel cell was researched by Aspen Plus software. The influences of water to methanol mole ratio (0.8~1.6), reaction temperature (140~400 ℃), and pressure (101.325~506.625 kPa) on methanol steam reforming process were investigated. The results show that the methanol equilibrium conversion and CO mole fraction increase when the temperature is raised, while the H2 mole fraction decreases at the same time. The equilibrium conversion of methanol decreases with pressure increasing, but the pressure has little effect on the mole fraction of H2 and CO. The equilibrium conversion of methanol is improved with the water to methanol mole ratio raising. However, a large number of water vapor will increase the load of the system and lower the thermal efficiency. Therefore, the appropriate range of water to methanol mole ratio is between 1.2 and 1.4. It can be found that H2 mole fraction is 64.27% and CO content is below 10-5 ultimately through simulation of the hydrogen source system, which can provide hydrogen source for kilowatt proton exchange membrane fuel cell.

Key words: Methanol steam reforming,    ,  Progress simulation,     ,  Water gas shift reaction,    ,  Hydrogen,    ,  CO

引用本文

苏石龙, 张 磊, 张 艳. 千瓦级P EMF C甲醇水蒸气重整制氢过程热力学模拟[J]. 石油化工高等学校学报, 2015, 28(2): 19-25.

Su Shilong,Zhang Lei,Zhang Yan,et al. Thermodynamic Simulation for Hydrogen Production in the Methanol  Steam Reforming System of Kilowatt PEMFC [J]. Journal of Petrochemical Universities, 2015, 28(2): 19-25.

使用本文