[1] |
王庭伟, 端木传嵩, 孟新宇, 等. 过渡金属硫化物催化剂性能优化与光催化水分解制氢研究进展[J]. 低碳化学与化工, 2024, 49(9): 41⁃50.
|
|
WANG T W, DUAN MU C S, MENG X Y, et al. Research progress in optimization of transition metal sulfide catalysts and hydrogen production from photocatalytic water splitting[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2024, 49(9): 41⁃50.
|
[2] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37⁃38.
|
[3] |
李盛龙, 孙玮, 吴晶, 等. 纳米铁酸铋的制备、改性及光催化应用[J]. 石油炼制与化工, 2024, 55(2): 135⁃143.
|
|
LI S L, SUN W, WU J, et al. Fabrication, modification and photocatalytic applications of bismuth ferrite nanomaterials[J]. Petroleum Processing and Petrochemicals, 2024, 55(2): 135⁃143.
|
[4] |
YE L Q, SU Y R, JIN X L, et al. Recent advances in BiOX (X=Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms[J]. Environmental Science: Nano, 2014, 1(2): 90⁃112.
|
[5] |
孙天奇, 陈勇号, 巫衡, 等. BiOCl/g⁃C3N4⁃Br光催化降解罗丹明B[J]. 化工环保, 2024, 44(2): 196⁃204.
|
|
SUN T Q, CHEN Y H, WU H, et al. Photocatalytic degradation of RhB by BiOCl/g⁃C3N4⁃Br[J]. Environmental Protection of Chemical Industry, 2024, 44(2): 196⁃204.
|
[6] |
JI M X, DI J, GE Y P, et al. 2D⁃2D stacking of graphene⁃like g⁃C3N4/ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal[J]. Applied Surface Science, 2017, 413: 372⁃380.
|
[7] |
WANG X J, LI F T, LI D Y, et al. Facile synthesis of flower⁃like BiOI hierarchical spheres at room temperature with high visible⁃light photocatalytic activity[J]. Materials Science and Engineering: B, 2015, 193: 112⁃120.
|
[8] |
HENLE J, KASKEL S. Preparation of photochromic transparent BiOX (X=Cl, I)/PLA nanocomposite materials via microemulsion polymerization[J]. Journal of Materials Chemistry, 2007, 17(47): 4964⁃4971.
|
[9] |
ZHAO K, ZHANG X, ZHANG L Z. The first BiOI⁃based solar cells[J]. Electrochemistry Communications, 2009, 11(3): 612⁃615.
|
[10] |
LAN H C, ZHANG G, ZHANG H W, et al. Solvothermal synthesis of BiOI flower⁃like microspheres for efficient photocatalytic degradation of BPA under visible light irradiation[J]. Catalysis Communications, 2017, 98: 9⁃12.
|
[11] |
PENG H L, CHAN C K, MEISTER S, et al. Shape evolution of layer⁃structured bismuth oxychloride nanostructures via low⁃temperature chemical vapor transport[J]. Chemistry of Materials, 2009, 21(2): 247⁃252.
|
[12] |
HENLE J, SIMON P, FRENZEL A, et al. Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions[J]. Chemistry of Materials, 2007, 19(3): 366⁃373.
|
[13] |
SU J L, XIAO Y, REN M. Direct hydrolysis synthesis of BiOI flowerlike hierarchical structures and it's photocatalytic activity under simulated sunlight irradiation[J]. Catalysis Communications, 2014, 45: 30⁃33.
|
[14] |
秦于伟, 王南, 王松, 等. g⁃C3N4/TiO2复合材料的制备及可见光催化降解硝基苯[J]. 当代化工, 2024, 53(3): 611⁃614.
|
|
QIN Y W, WANG N, WANG S, et al. Preparation of g⁃C3N4/TiO2 composite and visible light catalytic degradation of nitrobenzene[J]. Contemporary Chemical Industry, 2024, 53(3): 611⁃614.
|
[15] |
SHI L, WANG F X, ZHANG J, et al. Onion⁃like carbon modified porous graphitic carbon nitride with excellent photocatalytic activities under visible light[J]. Ceramics International, 2016, 42(16): 18116⁃18123.
|
[16] |
张琳, 宫晓杰, 李丽华. CeO2@UiO⁃66光催化降解盐酸四环素[J]. 辽宁石油化工大学学报, 2024, 44(5): 8⁃14.
|
|
ZHANG L, GONG X J, LI L H. Photocatalytic degradation of tetracycline hydrochloride by CeO2@UiO⁃66[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 8⁃14.
|
[17] |
XING C S, WU Z D, JIANG D L, et al. Hydrothermal synthesis of In2S3/g⁃C3N4 heterojunctions with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2014, 433: 9⁃15.
|
[18] |
宁尧, 刘满, 刘素燕. 多孔碳BVO/Zn@ZPC的制备及其光降解性能[J]. 石油化工高等学校学报, 2023, 36(6): 36⁃47.
|
|
NING Y, LIU M, LIU S Y. Preparation and photodegradation performances of porous carbon BVO/Zn@ZPC[J]. Journal of Petrochemical Universities, 2023, 36(6): 36⁃47.
|
[19] |
HUANG Y, HE Y M, CUI M, et al. Synthesis of AgCl/Bi3O4Cl composite and its photocatalytic activity in RhB degradation under visible light[J]. Catalysis Communications, 2016, 76: 19⁃22.
|
[20] |
WANG N, SHI L, YAO L Z, et al. Highly improved visible⁃light⁃induced photocatalytic performance over BiOI/Ag2CO3 heterojunctions[J]. RSC Advances, 2018, 8(1): 537⁃546.
|
[21] |
LIU Z S, RAN H S, WU B T, et al. Synthesis and characterization of BiOI/BiOBr heterostructure films with enhanced visible light photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 109⁃114.
|
[22] |
LI W T, ZHENG Y F, YIN H Y, et al. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity[J]. Journal of Nanoparticle Research, 2015, 17(6): 271.
|
[23] |
LI H Q, CUI Y M, HONG W S, et al. Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production[J]. Chemical Engineering Journal, 2013, 228: 1110⁃1120.
|
[24] |
LIN H L, YE H F, LI X, et al. Facile anion⁃exchange synthesis of BiOI/BiOBr composite with enhanced photoelectrochemical and photocatalytic properties[J]. Ceramics International, 2014, 40(7, Part A): 9743⁃9750.
|
[25] |
LIU X F, XIONG X Y, DING S P, et al. Bi metal⁃modified Bi4O5I2 hierarchical microspheres with oxygen vacancies for improved photocatalytic performance and mechanism insights[J]. Catalysis Science & Technology, 2017, 7(16): 3580⁃3590.
|