1 |
张小军, 郭继香, 高晨豪, 等. 纳米颗粒增强提高采收率应用进展[J]. 油田化学, 2022, 39(1): 186-190.
|
|
ZHANG X J, GUO J X, GAO C H, et al. Application of nanoparticles augmented enhanced oil recovery[J]. Oilfield Chemistry, 2022, 39(1): 186-190.
|
2 |
曲伟强, 赵佳辉, 王双, 等. 超级电容器用生物质基碳材料研究进展[J]. 低碳化学与化工, 2024, 49(10): 38-46.
|
|
QU W Q, ZHAO J H, WANG S, et al. Research progress of biomass-based carbon materials for supercapacitors[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(10): 38-46.
|
3 |
ZHOU W L, WANG X Y, SHAN J W, et al. Engineering hollow core-shell hetero-structure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2023, 80: 128-139.
|
4 |
HU W, ZHAO S. Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network[J]. Frontiers in Energy Research, 2022, 10: 969168.
|
5 |
LIU Y W, ZHOU T F, ZHENG Y, et al. Local electric field facilitates high-performance Li-ion batteries[J]. ACS Nano, 2017, 11(8): 8519-8526.
|
6 |
MAZLOOMIAN K, LANCASTER H J, HOWARD C A, et al. Supercapacitor degradation: Understanding mechanisms of cycling-induced deterioration and failure of a pseudocapacitor[J]. Batteries & Supercaps, 2023, 6(8): e202300214.
|
7 |
QIANG G, NAN C, QU L T. The advance and perspective on electrode materials for metal–ion hybrid capacitors[J]. Advanced Energy and Sustainability Research, 2021, 2(7): 2100022.
|
8 |
SUN C K, ZHANG X, AN Y B, et al. Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors[J]. Energy & Environmental Materials, 2023, 6(4): e12603.
|
9 |
CEMENTON C, RAMIREDDY T, DEWAR D, et al. We may be underestimating the power capabilities of lithium-ion capacitors[J]. Journal of Power Sources, 2024, 591: 233857.
|
10 |
张博, 郄佳鑫, 曹永安, 等. 基于可视化分析辅助探究钠离子电池硬碳负极研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 1-9.
|
|
ZHANG B, XI J X, CAO Y A, et al. Research progress of hard carbon anode of sodium-ion batteries based on visualization analysis[J]. Journal of Petrochemical Universities, 2022, 35(6): 1-9.
|
11 |
盛大伟, HASEEB U D, 张济原, 等. 还原氧化石墨烯微观结构调控及储钠性能研究[J]. 石油化工高等学校学报, 2023, 36(6): 48-56.
|
|
SHENG D W, HASEEB U D, ZHANG J Y, et al. Study on microstructure regulation and sodium storage performance of reduced graphene oxide[J]. Journal of Petrochemical Universities, 2023, 36(6): 48-56.
|
12 |
戚琦, 徐佩珠, 田志东, 等. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
|
|
QI Q, XU P Z, TIAN Z D, et al. Recent advances of the electrode materials for sodium-ion capacitors[J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
|
13 |
张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11): 48-58.
|
|
ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11): 48-58.
|
14 |
ZHAO C Y, YAO S Y, LI C, et al. Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal, 2024, 497: 154535.
|
15 |
WANG J, LI Z, RAMESH S, et al. Recent advances in metal oxides for sodium-ion capacitors: Mechanism, materials, and future prospects[J]. Chemical Engineering Journal, 2023, 478: 147485.
|
16 |
CHEN Z, AUGUSTYN V, JIA X L, et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites[J]. ACS Nano, 2012, 6(5): 4319-4327.
|
17 |
米超林, 秦玉莹, 黄欣莉, 等. 电化学置换反应制备石墨烯基纳米无定型锑复合阳极用于高性能钠离子电容器的构筑[J]. 物理化学学报, 2024, 40(5): 25-27.
|
|
MI C L, QIN Y Y, HUANG X L, et al. Galvanic replacement synthesis of graphene coupled amorphous antimony nanoparticles for high-performance sodium-ion capacitor[J]. Acta Physico-Chimica Sinica, 2024, 40(5): 25-27.
|
18 |
WANG L, WEI Z X, MAO M L, et al. Metal oxide/graphene composite anode materials for sodium-ion batteries[J]. Energy Storage Materials, 2019, 16: 434-454.
|
19 |
FANG G Z, WU Z X, ZHOU J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode[J]. Advanced Energy Materials, 2018, 8(19): 1703155.
|
20 |
王丽华, 杨卫亚, 沈智奇, 等. 贵金属单原子催化剂的制备、表征及在化学化工中的应用[J]. 当代化工, 2023, 52(10): 2290-2298.
|
|
WANG L H, YANG W Y, SHEN Z Q, et al. Synthesis,characterization and applications of noble metal single atom catalysts for chemical industry[J]. Contemporary Chemical Industry, 2023, 52(10): 2290-2298.
|
21 |
于芹芹, 戴友芝, 张莉, 等. 非贵金属单原子催化剂的研究进展[J]. 化工环保, 2022, 42(2): 143-147.
|
|
YU Q Q, DAI Y Z, ZHANG L, et al. Research progress of non-noble metal single-atom catalysts[J]. Environmental Protection of Chemical Industry, 2022, 42(2): 143-147.
|
22 |
鞠雅娜, 张雅琳, 张然, 等. 金属分散度对Ni基催化剂催化活性的影响研究[J]. 石油化工高等学校学报, 2022, 35(5): 71-77.
|
|
JU Y N, ZHANG Y L, ZHANG R, et al. Study on the effect of metal dispersion on the catalytic activity of nickel-based catalysts[J]. Journal of Petrochemical Universities, 2022, 35(5): 71-77.
|
23 |
SHI Y T, ZHAO C Y, WEI H S, et al. Single-atom catalysis in mesoporous photovoltaics: The principle of utility maximization[J]. Advanced Materials, 2014, 26(48): 8147-8153.
|
24 |
王璐琳, 刘会贞, 韩布兴. 单原子催化剂催化生物质衍生物选择性加氢的研究进展[J]. 石油炼制与化工, 2024, 55(1): 52-61.
|
|
WANG L L, LIU H Z, HAN B X. Advances in selective hydrogenation of biomass derivatives catalyzed by monatomic catalysts[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 52-61.
|
25 |
WANG A Q, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018, 2(6): 65-81.
|
26 |
KIRLIN P S, GATES B C. Activation of the C-C bond provides a molecular basis for structure sensitivity in metal catalysis[J]. Nature, 1987, 325(6099): 38-40.
|
27 |
VIDAL V V, THEOLIER A, THIVOLLE-CAZAT J, et al. Metathesis of alkanes catalyzed by silica-supported transition metal hydrides[J]. Science, 1997, 276(5309): 99-102.
|
28 |
QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
|
29 |
KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.
|
30 |
YAN H, CHENG H, YI H, et al. Single-atom Pd₁/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487.
|
31 |
YIN P Q, YAO T, WU Y E, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie (International ed. in English), 2016, 55(36): 10800-10805.
|
32 |
JIANG R, LI L, SHENG T, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities[J]. Journal of the American Chemical Society, 2018, 140(37): 11594-11598.
|
33 |
QIU X Y, YAN X H, PANG H, et al. Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction[J]. Advanced Science, 2019, 6(2): 1801103.
|
34 |
庄嘉豪, 王定胜. 单原子催化的关键进展与未来挑战[J]. 高等学校化学学报, 2022, 43(5): 21-37.
|
|
ZHUANG J H, WANG D S. Current advances and future challenges of single-atom catalysis[J]. Chemical Journal of Chinese Universities, 2022, 43(5): 21-37.
|
35 |
ZHANG L L, WANG Y J, NIU Z Q, et al. Single atoms on graphene for energy storage and conversion[J]. Small Methods, 2019, 3(9): 1800443.
|
36 |
WANG L, CHEN M X, YAN Q Q, et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts[J]. Science Advances, 2019, 5(10): eaax6322.
|
37 |
GONG W B, YUAN Q L, CHEN C, et al. Liberating N-CNTs confined highly dispersed Co-Nx sites for selective hydrogenation of quinolines[J]. Advanced Materials, 2019, 31(49): e1906051.
|
38 |
ZHANG J Q, ZHAO Y F, CHEN C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. Journal of the American Chemical Society, 2019, 141(51): 20118-20126.
|
39 |
YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.
|
40 |
YANG Y C, YANG Y W, PEI Z X, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage[J]. Matter, 2020, 3(5): 1442-1476.
|
41 |
CHUNG H T, CULLEN D A, HIGGINS D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017, 357(6350): 479-484.
|
42 |
HAN A, WANG B, KUMAR A, et al. Recent advances for MOF-derived carbon-supported single-atom catalysts[J]. Small Methods, 2019, 3(9): 1800471.
|
43 |
JIAO L, WAN G, ZHANG R, et al. From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media[J]. Angewandte Chemie, 2018, 130(28): 8661-8665.
|
44 |
FONSECA J, LU J. Single-atom catalysts designed and prepared by the atomic layer deposition technique[J]. ACS Catalysis, 2021, 11(12): 7018-7059.
|
45 |
SUN S, ZHANG G, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3: 1775.
|
46 |
YAN H, ZHAO X X, GUO N, et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity[J]. Nature Communications, 2018, 9(1): 3197.
|
47 |
ZHANG C H, SHA J W, FEI H L, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano, 2017, 11(7): 6930-6941.
|
48 |
LIN L L, ZHOU W, GAO R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83.
|
49 |
KWAK J H, KOVARIK L, SZANYI J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts[J]. ACS Catalysis, 2013, 3(9): 2094-2100.
|
50 |
YE C L, ZHANG N Q, WANG D S, et al. Single atomic site catalysts: Synthesis, characterization, and applications[J]. Chemical Communications (Cambridge, England), 2020, 56(56): 7687-7697.
|
51 |
AHN T, KIM J H, YANG H M, et al. Formation pathways of magnetite nanoparticles by coprecipitation method[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6069-6076.
|
52 |
周嘉琪, 杨思然, 艾绯雪, 等. Co9S8@CNFs复合材料的制备及其在锂离子电池的应用[J]. 辽宁石油化工大学学报, 2022, 42(6): 21-27.
|
|
ZHOU J Q, YANG S R, AI F X, et al. Preparation of Co9S8@CNFs composites and their application in lithium-ion batteries[J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 21-27.
|
53 |
XU Q, LI Y N, WU C H, et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers[J]. Nano Research, 2022, 15(7): 6176-6183.
|
54 |
XUE Y, LI Y, LUO G, et al. Using a dynamic inhibition concept to achieve content-controllable synthesis of n-coordinated Cu atoms as reversible active site toward super Li-ion capacitors[J]. Advanced Energy Materials, 2020, 10(41): 200264.
|
55 |
YIN X P, WANG H J, TANG S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(30): 9382-9386.
|
56 |
PODYACHEVA O Y, BULUSHEV D A, SUBOCH A N, et al. Highly stable single-atom catalyst with ionic Pd active sites supported on N-doped carbon nanotubes for formic acid decomposition[J]. ChemSusChem, 2018, 11(21): 3724-3727.
|
57 |
QIN Q, HEIL T, ANTONIETTI M, et al. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen[J]. Small Methods, 2018, 2(12): 1800202.
|
58 |
GUAN X Z, HAN R, ASAKURA H, et al. Subsurface single-atom catalyst enabled by mechanochemical synthesis for oxidation chemistry[J]. Angewandte Chemie International Edition, 2024, 63(42): e202410457.
|
59 |
HOWARD J L, CAO Q, BROWNE D L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer?[J]. Chemical Science, 2018, 9(12): 3080-3094.
|
60 |
JIN H Y, SULTAN S, HA M R, et al. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution[J]. Advanced Functional Materials, 2020, 30(25): 2000531.
|
61 |
CUI X, LI H, WANG Y, et al. Room-temperature methane conversion by graphene-confined single iron atoms[J]. Chem, 2018, 4(8): 1902-1910.
|
62 |
LI X, YE W, XU P, et al. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes[J]. Advanced Materials, 2022, 34(31): 2202898.
|
63 |
PAL P, BHOWMIK S, NANDI M. Ni single atom decorated porous hollow carbon nanosphere-based electrodes for high performance symmetric solid-state supercapacitors[J]. Chemistry, 2024, 30(39): e202400638.
|
64 |
NWAJI N, ZEWDIE G M, GWAK J, et al. Dimeric Ni-Co single-atom anchored on ultrathin N-doped 2D molybdenum carbide boosted performance in solid-state supercapacitor[J]. Journal of Energy Storage, 2024, 83: 110671.
|
65 |
YANG L, LIU P, ZHOU J. Unleashing anion chemical adsorption with pore-confined single atom zinc for enabling high-performance lithium-ion capacitors[J]. ACS Applied Energy Materials, 2023, 6(19): 10105-10115.
|
66 |
LIU F, MENG J S, JIANG G P, et al. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage[J]. Matter, 2021, 4(12): 4006-4021.
|
67 |
GAO Z Y, TAO S, ZHU L, et al. Coordination engineering of single zinc atoms on hierarchical dual-carbon for high-performance potassium-ion capacitors[J]. Journal of Colloid and Interface Science, 2023, 649: 203-213.
|
68 |
SU J A, ZHUANG L Z, ZHANG S S, et al. Single atom catalyst for electrocatalysis[J]. Chinese Chemical Letters, 2021, 32(10): 2947-2962.
|
69 |
SHAH S S A, NAJAM T, BASHIR M S, et al. Single-atom catalysts for next-generation rechargeable batteries and fuel cells[J]. Energy Storage Materials, 2022, 45: 301-322.
|
70 |
XI J B, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(12): 2008318.
|
71 |
HU X, WANG G, LI J, et al. Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium-ion hybrid capacitors[J]. Energy & Environmental Science, 2021, 14(8): 4564-4573.
|
72 |
LIU L, DU Z Z, SUN J M, et al. Engineering the first coordination shell of single Zn atoms via molecular design strategy toward high-performance sodium-ion hybrid capacitors[J]. Small, 2023, 19(21): e2300556.
|
73 |
LIU B, HU S, PAN Y, et al. Amorphous modulation of atomic Nb-O/N clusters with asymmetric coordination in carbon shells for advanced sodium-ion hybrid capacitors[J]. Small, 2024, 20(12): 2308263.
|
74 |
WANG C, LI B H, SHEN W C, et al. Unveiling the effects of Cr single atoms with controllable configurations on solid electrolyte interphase and storage mechanism of sodium ions[J]. Advanced Functional Materials, 2023, 33(18): 2214429.
|
75 |
SU M, PAN Z, CHONG Y, et al. Boosting the electrochemical performance of hematite nanorods via quenching-induced metal single atom functionalization[J]. Journal of Materials Chemistry A, 2021, 9(6): 3492-3499.
|